
Cloud Federation
Tobias Kurze∗, Markus Klems†, David Bermbach†, Alexander Lenk‡, Stefan Tai† and Marcel Kunze∗

∗Steinbuch Centre for Computing (SCC)
Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Email: {kurze, marcel.kunze}@kit.edu
†Institute of Applied Informatics and Formal Description Methods (AIFB)

Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
Email: {markus.klems, david.bermbach, stefan.tai}@kit.edu

‡FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

Email: {lenk}@fzi.de

Abstract—This paper suggests a definition of the term Cloud
Federation, a concept of service aggregation characterized by
interoperability features, which addresses the economic problems
of vendor lock-in and provider integration. Furthermore, it
approaches challenges like performance and disaster-recovery
through methods such as co-location and geographic distribution.
The concept of Cloud Federation enables further reduction of
costs due to partial outsourcing to more cost-efficient regions,
may satisfy security requirements through techniques like frag-
mentation and provides new prospects in terms of legal aspects.
Based on this concept, we discuss a reference architecture that
enables new service models by horizontal and vertical integration.
The definition along with the reference architecture serves as a
common vocabulary for discussions and suggests a template for
creating value-added software solutions.

Index Terms—Cloud Computing, Cloud Federation, Reference
Architecture, Lock-In, Hold-Up, Integration

I. INTRODUCTION

The Cloud Computing paradigm advocates centralized con-
trol over resources in interconnected data centers under the
administration of a single service provider. This approach
offers economic benefits due to supply-side economies of
scale, reduced variance of resource utilization by demand
aggregation, as well as reduced information technology (IT)
management cost per user due to multi-tenancy architecture
[1].

These benefits have contributed to the increasing industry
acceptance of Cloud services, which are seen as more af-
fordable and reliable alternatives compared to traditional in-
house IT systems and services. However, downsides of the
Cloud Computing paradigm are surfacing. Surveys show that
potential customers hesitate to outsource their business appli-
cations and data into the cloud [2]. Besides security concerns,
application users are afraid of loosing ownership and control.
The lack of standardized service interfaces, protocols and data
formats is a portent of vendor lock-in [3]. This problem can
lead to underinvestment, an economically inefficient situation,
and therefore deserves our attention.

We propose an extended concept of Cloud Federation to
enable the design of flexible and interoperable Cloud-based
software, thereby lowering the adverse effects of vendor lock-

in. We further discuss Cloud Federation as a key concept
allowing the development of new types of applications.

The paper is structured as follows: Section II provides an
overview of the state of the art on Cloud Stack and describes
economic problems related to Cloud Computing. In Section
III we state a definition of the term Cloud Federation and
explain the concept in detail. Section IV introduces our vision
of a reference architecture for federated Clouds. Finally, we
give thought to open issues in Section V before concluding in
Section VI.

II. BACKGROUND AND RELATED WORK

Cloud Computing distinguishes the service models
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS) [4] [5]. IaaS
offers infrastructure services, such as Compute Clouds,
Cloud Storage, Message Queues, etc. PaaS offers complete
platforms, solution stacks and execution environments, while
SaaS is a software delivery model driven by a multi-tenancy
architecture.

A. Cloud Stack

The principal service models IaaS, PaaS and SaaS do relate
to one another and can be arranged as a stack. The IaaS
layer represents the lowest level of the stack and is very
close to the underlying hardware. Inside the IaaS layer two
types of services can be differentiated: computational and
storage [5]. Typical representatives for infrastructure services
are Amazon’s EC2 and Amazon’s S3 (Appendix: Table A).

PaaS represents the second layer in the stack. Famous exam-
ples are Microsoft’s Azure, Google’s App Engine, SalesForce’
Force.com and Amazon’s Elastic Beanstalk (Appendix: Table
A). Elastic Beanstalk is currently in beta phase and directly
based on Amazon’s IaaS offerings.

Upper layers such as SaaS (e.g., Google Docs) and Human
as a Service (HuaaS) are directly or indirectly based on either
IaaS or PaaS. Some secondary services, such as monitoring,
accounting, authentication, metering or configuration and man-
agement are needed on multiple levels of the stack.



B. Cloud Software and Cloud Products

1) Private Cloud Computing Software: There is a broad
spectrum of open source software, which mimics the propri-
etary systems of Amazon, Google, & Co. For example, Euca-
lyptus, AppScale, typhoonAE, and OpenNebula (Appendix:
Table A). Users can install the open source software “in-
house” as private cloud solutions. Since such a private cloud
solution is partially compatible with the interfaces, protocols,
programming models, and deployment options of the propri-
etary public clouds, this might be an approach to create an
interoperable hybrid cloud, a composition of private and public
clouds [6].

2) Cloud Marketplaces and Federation Offerings: While
marketplaces, like Zimory or SpotCloud allow trading with
Cloud resources, offerings like CloudKick and ScaleUp pro-
vide some federation functionality, e.g., monitoring and man-
agement supporting multiple clouds (Appendix: Table A).

C. Economic Theory

1) Vendor Lock-in: Vendor lock-in has been studied in eco-
nomics research communities, for example by Robin Cowan
[7]. Cowan identifies two sources of vendor lock-in: uncer-
tainty of selecting an unknown technology, and the learning
curve of a technology. The problem with two technologies A
and B is formalized as the dynamic programming problem
“Two-armed bandit”.

We observe a growing number of Cloud Computing service
providers and service offerings, in particular Cloud Storage
and Compute services. These offerings tie users to a specific
technology, which cannot be switched or replaced without
significant switching cost. Apparently, this is the case for
PaaS offerings, e.g., Google App Engine, which are closely
integrated with proprietary services, such as Google user ac-
counts and the Google e-mail service. Offerings like Amazon
Web Services seem to have lower switching costs because
they build upon Web service standards. However, a competing
service provider would have to provide a similar technology
(distributed system) with similar quality levels (availability,
reliability, latency, throughput, etc.) and features (launch, stop,
start, etc.).

This leads to the consequence, that users depend on the
business strategy of the service provider.

2) Hold-up Problem and Underinvestment: The hold-up
problem has been described by Klein, Crawford and Alchian
[8] as being basically a contract problem. Two firms want to
start business relations. In order to do so one party has to
make an investment, which is specific in regard to the other
party. Transferred to a concrete Cloud scenario, a company
could invest in developers and applications, which are using
Amazon’s Web Services. This particular investment is of
virtually no use when not used in the context of the two
parties, i.e., the applications can not be used with Google’s
App Engine for example nor can the spezialized developers
work with Microsoft’s Azure. It is not possible to write
complete contracts, i.e., contracts containing all, even future
aspects of business relations, which might have an influence

on the returns from the investment [9]. Due to incomplete
contracts it is very likely that situations will arise that have
not been foreseen at the time of the contract writing, making
renegotiations necessary. In such future interactions one party
may take advantage of the lock-in situation.

A party, anticipating the risk of a lock-in situation, typically
takes suboptimal investment decisions, leading to underin-
vestment. [10, 11] When already facing the lock-in problem,
a company may decide to stop further investment or to
expend resources to protect itself against the lock-in. A party
anticipating lock-in, hence, ends up in a hold-up situation,
which in either case, leads to inefficient results [9].

Ewerhart et al. [12] summarized that in a lock-in situation,
market forces are no longer effective and there is a risk of ex-
post opportunistic behaviour. A party being forced to accept
sub-optimal conditions cannot escape the situation due to the
lock-in and finds itself in a hold-up [13].

III. CLOUD FEDERATION

Cloud federation comprises services from different
providers aggregated in a single pool supporting three
basic interoperability features - resource migration, resource
redundancy and combination of complementary resources
resp. services. Migration allows the relocation of resources,
such as virtual machine images, data items, source code,
etc. from one service domain to another domain. While
redundancy allows concurrent usage of similar service
features in different domains, combinations of complementary
resources and services allows combining different types to
aggregated services. Service disaggregation is closely linked
to Cloud Federation as federation eases and advocates the
modularization of services in order to provide a more efficient
and flexible overall system.

We identify two basic dimensions of Cloud Federation: hor-
izontal, and vertical. While horizontal federation takes place
on one level of the Cloud Stack, e.g., the application stack,
vertical federation spans multiple levels. In the following we
focus on horizontal federation; aspects of vertical federation
are out of the scope of this publication.

Several aspects of horizontal federation can be distin-
guished, e.g., provider domain and geography. Horizontal
federation across provider domains may decrease provider
dependency and thereby lower the risks of vendor lock-in
and hold-up. Increased availability may be achieved through
horizontal federation across multiple geographic regions. Also,
vertical federation scenarios along similar aspects are imagin-
able.

Cloud Federation can be of interest for providers as well
as for customers. Customers may profit from lower costs and
better performance, while providers may offer more sophisti-
cated services. However, hereinafter we focus on the customer
perspective.

Two types of scenarios can be linked to Horizontal Feder-
ation:



• Redundancy: is used whenever there is a subset of (prop-
erly organized) service offerings that provide better util-
ity to a client than any single service offering xi, i.e.,
∃X ⊆

⋃
i xi where ∀xi : u(X) > xi. the duration is,

at least regarding a near time horizon, permanent as the
user purposefully uses multiple service providers at the
same time.
• Migration: can be triggered when a new service offering

offers better utility to a client than any previously used
service offering, i.e., ∃xnew∀xi : u(xnew) > u(xi)+u(cs)
where cs are the total switching costs and xnew 6∈

⋃
i xi.

Figure 1 illustrates the behavior over time of the two
scenarios.

Fig. 1. Migration vs. Redundancy

A. Redundancy

Following the technical Cloud Stack [5], we can distinguish
IaaS, PaaS and SaaS as different levels where horizontal
redundancy can be used.

1) IaaS:
a) Compute services: know 3 kinds of redundancy:

• Redundant deployment: The same application logic is
deployed to different providers. Still, incoming requests are
processed by only one instance. Redundant deployment is
used to increase the availability while decreasing provider
dependence. Other reasons to do so could be compliance
with regulations, which require instances in particular
geographic locations. Also, customer proximity could be
an issue to reduce latency.
• Redundant computation: The same application logic is

deployed to different providers. Nevertheless, in contrast to
redundant deployment here every request is processed by
more than one instance. Reasons to do so could be either
to improve performance by reducing the risk of an instance
failing right before completing a task, an approach, e.g.,
taken in Google’s MapReduce [14], or limited trust in the
provider returning correct results.
• Parallel computation: Here, the data is broken down at bit

level and processed at different providers’ sites following
the same application logic or complimentary services are

deployed to different providers. Reasons for the 1st case
could be security considerations where each provider only
knows a tiny subset of the data. In the 2nd case, tasks
are spread to the best fitting VMs to optimize latency and
throughput.

b) Storage Services: know 3 kinds of redundancy:

• Replication: Data items are distributed as a whole and
multiple copies are stored to increase availability while
removing a single point of failure [15, 16, 17, 3] and re-
ducing vendor lock-in. Furthermore, an increased number
of replica may improve read latency due to customer prox-
imity and increases durability. This is especially of interest
when addressing resilience to correlated failures. However,
whenever copies of the same data are kept at different
sites there is a general tradeoff between consistency and
availability as well as latency depending on how a storage
system updates replica. This may happen synchronously,
asynchronously in the background or as a combination of
both.

• Erasure coding: Erasure coding uses RAID-like algorithms
[18, 19] to distribute parts of data. If those parts overlap it
is possible to restore data items even if a limited number
of parts is missing. This obviously improves security as
each provider knows only a tiny subset of the data item.

• Fragmentation: Here, items of type 1 are stored at provider
A while type 2 is stored at provider B. This is useful when
functional (e.g., data structure) and non-functional require-
ments (e.g., geographic location, durability, consistency)
differ for different types of data.

2) PaaS:
PaaS offerings are hard to use redundantly as they usually

not only follow a different programming model and support
only a limited number of programming languages but also
do applications developed for a particular PaaS offering make
use of an entire ecosystem of services provided just within
that PaaS offering. Furthermore, PaaS generally introduces
limitations on the programming model they build upon so that
applications need to be fine-tuned for a particular platform.
So, the only sensitive alternative when trying to use federated
PaaS offerings is to use one, for which an open source offering
exists, which can, hence, be hosted by the customer or on
top of IaaS compute resources. An example would be to
redundantly use Google App Engine and AppScale running
on top of Amazon EC2.

3) SaaS: Multiple SaaS offerings can be used redundantly
with focus on different aspects:

• Focus on user experience: In this case, software services
with similar functionality are used concurrently. An appli-
cation could, e.g., allow the end user to toggle between
visualization using Google or Bing Maps. This could
enhance user experience by enabling a user to use a service
he is used to. As a side effect, it would increase availability.

• Focus on availability: In this case software services with
similar functionality are required but not used concurrently.



An application might switch over to a backup service in
case of unavailability of the primary service.

While fine-grained SaaS offerings, e.g., Map services, can
be used in a federation context relatively easy, it is very
hard and probably cost-intensive to federate more complex
services like, e.g., Salesforce. The difficulty to federate such
offerings is caused by the fact, that it is virtually impossible to
isolate smaller building blocks of the service as no competing
solutions exist, which offer exactly the same functionality.
Also, the potentially proprietary data formats and APIs of
such services increase the problem. We believe that the issues
related to the federation of SaaS offerings with larger gran-
ularity cannot be addressed in an adequate way by technical
approaches and are therefore beyond the scope of this paper.

B. Migration

Migration incorporates scenarios where data respectively
resources are being transferred from one Cloud provider A to
another Cloud provider B. We identify two types of migration:

• Shadowed or redundant migration: In a migration scenario
multiple similar services are usually only used for a limited
amount of time, during which the old service is still
operational while the new service is introduced. In the
beginning, the new service is shadowing the old service to
test it with live data. After switching over, the old service
is shadowing the new one as a fallback solution in case of
unanticipated failures. Finally, the old service is put out of
service and the migration is finished.
• Non-redundant migration: Here, there is a hard switch-

over. There is no shadowing period before or after.

In addition to those two types, we distinguish between full
and partial migration:

• In the case of full migration an entire service stack
is migrated, i.e., all components belonging to a certain
service are migrated, e.g., a web server along with its
database.
• Partial migration is linked to service disaggregation and

describes the migration of service components or modules.
A service composed of multiple components can be dis-
aggregated into sub-services, some of which may then be
migrated, before being reestablished as separate service.

IV. TOWARDS A REFERENCE ARCHITECTURE

Cloud services offer access to services, which are associ-
ated with pools of stateful resources, e.g., virtual machines,
data storage, queues, e-mail systems, etc. Our concept of a
resource is similar to the notion of resources within the WS-
Resource framework [20], however, less formalized because
cloud services do not necessarily standardize on Web Service
specifications.

We distinguish between two types of programmatic access
to these resources:

• Resource API
• Management API

Applications implement the Resource API to access and
utilize resources, which are exposed as business logic. For
example, Amazon S3 offers a Resource API to create, read,
update, and delete basic storage volumes (“buckets”) as well
as to upload or download data objects. Within the business
logic of a photo-sharing application, buckets could be used as
photo albums and a data object within a bucket could represent
a photo image file. Table I illustrates that a photo-sharing
application could be implemented with Cloud services from
either Amazon or Google - or with a mix of services from
both providers.

TABLE I
EXAMPLE PHOTO-SHARING APPLICATION.

Application feature AWS Google App Engine

Photo storage S3 buckets & obj. Data store or Blobstore
Photo notification SQS or SNS Channel service
Image editing N/A Image service
Photo sharing SES Mail service

The Management API helps application developers and
administrators to manage resources efficiently. This includes
a variety of activities: monitoring, deployment, data man-
agement, and so on. For example, Amazon EC2 offers a
Management API for managing virtual machines (e.g., launch,
stop, terminate) along with related settings and add-on ser-
vices (e.g., security groups, block storage volumes, static IP
addresses). Google App Engine offers a Management API
to deploy application packages into the runtime environment
and a dashboard for monitoring and administration (e.g., logs,
cron jobs, datastore indexes, application versions and release
management).

A. Two Perspectives on Interoperability

Interoperability challenges can be viewed from the per-
spective of a service provider or from the perspective of
a service user. A service provider could be interested in
offering distributed system services, which are interoperable
with established, proprietary de-facto standards. Service users,
on the other side, could design and implement applications
with adaptors to multiple service providers, thereby enabling
federation.

Table II shows 5 open source systems, which offer services
similar to Amazon EC2 and Amazon S3. These systems
support the interface definitions and protocols of their Amazon
Web Services counterparts. Currently, all of the open source
systems offer merely a small subset of comparable services
and therefore only cover a subset of the Amazon Web Services
API. The quality of a hosted open source solution, however,
significantly depends on the system management skills of the
hosting provider with regard to system scalability, performance
and fault-tolerance. The systems could for example be backed
with open source distributed system solutions, such as Apache
HBase or Apache Cassandra, thereby providing a basis for
achieving higher quality levels. Still, this induces even more
integration challenges.



TABLE II
AMAZON WEB SERVICES (AWS) COMPATIBLE OPEN SOURCE CLOUD

MANAGEMENT SYSTEMS.

Name API AWS-compatible services

Eucalyptus AWS Eucalyptus (EC2), Walrus (S3)
OpenNebula OCCI, AWS OpenNebula (EC2)
CloudStack CloudStack, AWS CloudStack + CloudBridge (EC2)
OpenStack OpenStack, AWS OpenStack: Compute, Image Ser-

vice (EC2) & Object Storage (S3)
Nimbus WSRF, AWS Nimbus (EC2), Cumulus (S3)

TABLE III
COMPARISON OF MULTI-CLOUD LIBRARIES AND UTILITY PROGRAMS.

Name Lang. License AWSa RAXb GOOGc VMWd MSe GGf

jclouds Java Apache2 yes yes yes yes yes yes
JetS3t Java Apache2 yes no yes no no no
fog Ruby MIT yes yes yes no no yes
boto Python MIT yes no yes no no no
libcloud Python Apache2 yes yes no yes no yes
deltacloud Ruby Apache2 yes yes no no no yes
Whirr Java Apache2 yes yes no no no no
PyStratus Python Apache2 yes no no no no no

aAmazon bRackspace cGoogle dVMWare eMicrosoft fGoGrid

Table III shows a list of multi-cloud libraries, which enable
interoperability across similar cloud services on a higher level
than the systems discussed before. During the implementation
of an application, the libraries jclouds, JetS3t, fog, boto,
libcloud, and deltacloud are linked into the build path. When
the application has been implemented, it can be deployed using
any of the library-supported cloud services. This simplifies
migration processes and redundancy setups as described in the
sections before as there is no need to re-design the application.
Instead, simple configuration options, usually just the service
endpoints, must be changed. Figure 2 illustrates the migration
of a service and the impacts on the service endpoints and the
thereon based application.

Fig. 2. Migration scenario illustrating impact on service endpoints

Additionally, utilities like Whirr (based on jclouds) and
PyStratus can be used to deploy complex distributed systems
on top of exchangeable compute clouds, such as EC2 or the
Rackspace Cloud.

Both strategies, interoperable open source solutions and
multi-cloud application code, can be employed to facilitate
transparent application migration. Redundancy is more com-
plicated to establish: Either it is explicitly foreseen in the
application’s code or there is a federation system providing a
suitable programming abstraction. An additional layer decou-
ples the application from the actual resources and permits their
transparent reconfiguration, e.g., change redundancy strategy
to erasure coding. Figure 3 illustrates the two strategies.

Fig. 3. Redundancy Strategies

B. Potential Reference Architecture Components

The open source cloud management systems in Table II
and the multi-cloud software libraries in Table III are crucial
elements for creating a federated cloud application. However,
the systems and libraries should be discussed in a wider
context to answer how applications can be migrated from one
cloud service to another or operated on top of redundant cloud
services.

We suggest that a reference architecture should contain the
following components:

• Provisioning Engine: takes an application package along
with policies and maps business logic components to
a pool of resources. The projected mapping along with
management configurations is then executed and enforced
through a Distribution Manager.

• Distribution Manager: contains multiple sub-
components, through which it enforces guarantees
specified with policies. For example, enforce consistency
between data replica; enforce the same deployment
configuration on multiple servers. It may also serve as a
redundancy decoupling layer. Principal components are:

– Deployment Manager: is a component of the Distri-
bution Manager. Based on a deployment description
the manager executes resource management com-
mands through Resource Managers. It guarantees the
avalabillity and the correct configuration of provi-
sioned resources.

– Configuration Manager: is a component of the
Deployment Manager. It recreates virtual appliances



resp. application stacks based on stored configuration
informations.

– Data Distribution Manager: is a component of the
Distribution Manager. It manages the distribution of
data, e.g., data replication, data redundancy, accord-
ing to the distribution strategies.

The distribution managers secondary components are:
– Transformation: is used to transform incompatible

formats, e.g., virtual machine images and to map
between different data formats.

– Monitoring: gathers information about resource
states and information about their configuration
through the Resource Managers. In case of unex-
pected conditions the Distribution Manager adapts
the system to match the projected provision mapping.

• Resource Manager: manages all resources in a unified
way. It can be realized as a collection of resource-
localized components. The Resource Manager provides
an abstraction of the APIs of the underlaying services and
allows the Distribution Manager to configure resources in
different clouds in a unified way. It may use adaptors, for
example multi-cloud libraries, to perform its tasks.

Figure 4 depicts our current vision of the reference archi-
tecture. We have to point out, that we are still doing research
on the reference architecture and that the figure should only
be considered a snapshot of our momentary work in progress.

Fig. 4. Reference Architecture

V. DISCUSSION

A. Vendor Lock-In and Cloud Computing

As depicted in Section II, vendor lock-in exists when
potential switching costs surpass the benefits the customer
would enjoy by switching to another provider. This is currently
the case with Cloud Computing: by switching the provider
the initial ex-ante investments could be largely lost and new

investments, to adapt the software and retrain employees, will
be necessary, thus exceeding the benefits of the provider-
change. This implicates, that in Cloud Computing, lock-in, and
in consequence hold-up, is a result of the different, proprietary
interfaces, services and service offerings and the complexity
involved in coping with this issues.

Since Cloud Federation resolves the above mentioned issues
or - at the least - lowers the costs involved, we claim that it
thereby resolves lock-in as well as hold-up and is a key enabler
of Cloud marketplaces.

B. Future Work

Thoughts on Vertical and Secondary Services Federation are
not incorporated in this article and will be subject to future
works. Also the proposed federation reference architecture has
to be elaborated in more detail in future works. Notably, we
did not outline details on our vision of application packages
and how the architecture’s components could be realized.

VI. CONCLUSION

Cloud Federation is a concept, which has a large potential
and might have an enormous influence on the way computing
resources and applications will be handled, developed and
used. It is a further step of providing computing resources
in an utility-services-like way, similar to other services, e.g.,
electricity or water. However the evolution of Cloud Com-
puting and related concepts and technologies is extremely
dynamic and it is very difficult to make long-term prognoses.
We believe anyhow, that this article can be a substantial
contribution to future works on Cloud Federation.

ACKNOWLEDGMENT

The work presented in this paper was performed in the
context of the Software-Cluster project EMERGENT [21]. It
was partially funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) under grant no. “01IC10S01”.
The authors assume responsibility for the content.

REFERENCES

[1] R. Harms and M. Yamartino, “The economics of
the cloud,” Microsoft Corporation, Redmond, WA,
USA, Microsoft Whitepaper, November 2010. [Online].
Available: http://www.microsoft.com/presspass/presskits/
cloud/docs/The-Economics-of-the-Cloud.pdf

[2] “Microsoft: Smb hosted it commentary report,” 2010.
[3] M. Armbrust et al., “Above the clouds: A berkeley

view of cloud computing,” University of California
at Berkeley, Tech. Rep., February 2009. [Online].
Available: http://berkeleyclouds.blogspot.com/2009/02/
above-clouds-released.html

[4] P. Mell and T. Grance, “The nist definition of
cloud computing,” National Institute of Standards
and Technology, vol. 53, no. 6, p. 50, 2009.
[Online]. Available: http://csrc.nist.gov/groups/SNS/
cloud-computing/cloud-def-v15.doc

[5] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm,
“What’s inside the cloud? an architectural map of the

http://www.microsoft.com/presspass/presskits/cloud/docs/The-Economics-of-the-Cloud.pdf
http://www.microsoft.com/presspass/presskits/cloud/docs/The-Economics-of-the-Cloud.pdf
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc


cloud landscape,” Software Engineering Challenges of
Cloud Computing, ICSE Workshop on, vol. 0, pp. 23–
31, 2009.

[6] C. Baun, M. Kunze, J. Nimis, and S. Tai, Cloud Com-
puting: Web-basierte dynamische IT-Services, ser. Infor-
matik im Fokus. Berlin: Springer-Verlag, Oktober 2009.

[7] R. Cowan, “Tortoises and hares: Choice among
technologies of unknown merit,” The Economic Journal,
Jan. 1991. [Online]. Available: http://links.jstor.org/sici?
sici=0013-0133(199107)101%253A407%253C801%
253ATAHCAT%253E2.0.CO%253B2-S

[8] B. Klein, R. G. Crawford, and A. A. Alchian,
“Vertical integration, appropriable rents, and the
competitive contracting process,” Journal of Law
& Economics, vol. 21, no. 2, pp. 297–326, October
1978. [Online]. Available: http://ideas.repec.org/a/ucp/
jlawec/v21y1978i2p297-326.html

[9] B. Holmstrom and J. Roberts, “The boundaries
of the firm revisited,” Journal of Economic
Perspectives, vol. 12, no. 4, pp. 73–94, Fall 1998.
[Online]. Available: http://ideas.repec.org/a/aea/jecper/
v12y1998i4p73-94.html

[10] P. A. Grout, “Investment and wages in the absence
of binding contracts: A nash bargining approach,”
Econometrica, vol. 52, no. 2, pp. 449–60, March 1984.
[Online]. Available: http://ideas.repec.org/a/ecm/emetrp/
v52y1984i2p449-60.html

[11] J. Tirole, “Procurement and renegotiation,” Journal of
Political Economy, vol. 94, no. 2, pp. 235–59, April
1986. [Online]. Available: http://ideas.repec.org/a/ucp/
jpolec/v94y1986i2p235-59.html

[12] C. Ewerhart and P. W. Schmitz, “Der lock in effekt und
das hold up problem,” University Library of Munich,
Germany, MPRA Paper 6944, 1997. [Online]. Available:
http://ideas.repec.org/p/pra/mprapa/6944.html

[13] O. E. Williamson, Markets and hierarchies: An analysis
and antitrust Implications. The Free Press, 1975.

[14] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” in Proceedings of the
6th conference on Symposium on Opearting Systems
Design & Implementation - Volume 6. Berkeley,
CA, USA: USENIX Association, 2004, pp. 10–10.
[Online]. Available: http://portal.acm.org/citation.cfm?
id=1251254.1251264

[15] J. Broberg, R. Buyya, and Z. Tari, “Metacdn: Harnessing
’storage clouds’ for high performance content delivery,”
J. Network and Computer Applications, vol. 32, no. 5,
pp. 1012–1022, 2009.

[16] K. D. Bowers, A. Juels, and A. Oprea, “Hail: a high-
availability and integrity layer for cloud storage,” in ACM
Conference on Computer and Communications Security,
2009, pp. 187–198.

[17] D. Bermbach, M. Klems, M. Menzel, and S. Tai, “Metas-
torage: A federated cloud storage system to manage
consistency-latency tradeoffs,” in Proceedings of the
IEEE Cloud 2011 - to appear, 2011.

[18] H. Weatherspoon and J. Kubiatowicz, “Erasure coding
vs. replication: A quantitative comparison,” in Revised
Papers from the First International Workshop on
Peer-to-Peer Systems, ser. IPTPS ’01. London, UK:
Springer-Verlag, 2002, pp. 328–338. [Online]. Available:
http://portal.acm.org/citation.cfm?id=646334.687814

[19] Y. Saito, S. Frølund, A. C. Veitch, A. Merchant, and
S. Spence, “Fab: building distributed enterprise disk
arrays from commodity components,” in ASPLOS, 2004,
pp. 48–58.

[20] K. Czajkowski et al., “The ws-resource frame-
work,” Tech. Rep. 1.0, March 2004. [Online].
Available: http://www.ibm.com/developerworks/library/
ws-resource/ws-wsrf.pdf

[21] “Software-cluster emergent.” [Online]. Available: www.
software-cluster.org

APPENDIX

Table A - Cloud product overview
Name URI

Amazon’s EC2 http://aws.amazon.com/ec2/
Amazon’s Elastic Beanstalk http://aws.amazon.com/elasticbeanstalk/
Amazon’s S3 http://aws.amazon.com/s3/
AppScale http://code.google.com/p/appscale
CloudKick http://www.cloudkick.com/
Google App Engine http://code.google.com/appengine/
Microsoft Azure http://www.microsoft.com/windowsazure/
SalesForce’ Force.com http://www.salesforce.com/platform/
ScaleUp http://www.scaleupcloud.com/
SpotCloud http://spotcloud.com
Zimory http://www.zimory.com

Table B - Multi-cloud library overview
Name URI

boto http://code.google.com/p/boto/
deltacloud http://incubator.apache.org/deltacloud/
fog http://github.com/geemus/fog
jclouds http://code.google.com/p/jclouds/
JetS3t http://jets3t.s3.amazonaws.com/
libcloud http://incubator.apache.org/libcloud/
PyStratus https://github.com/digitalreasoning/PyStratus/
Whirr http://incubator.apache.org/whirr/

Table C - Open source cloud management systems overview
Name URI

CloudStack http://cloud.com/
Eucalyptus http://open.eucalyptus.com/
Nimbus http://www.nimbusproject.org/
OpenNebula http://opennebula.org/
OpenStack http://www.openstack.org/

http://links.jstor.org/sici?sici=0013-0133(199107)101%253A407%253C801%253ATAHCAT%253E2.0.CO%253B2-S
http://links.jstor.org/sici?sici=0013-0133(199107)101%253A407%253C801%253ATAHCAT%253E2.0.CO%253B2-S
http://links.jstor.org/sici?sici=0013-0133(199107)101%253A407%253C801%253ATAHCAT%253E2.0.CO%253B2-S
http://ideas.repec.org/a/ucp/jlawec/v21y1978i2p297-326.html
http://ideas.repec.org/a/ucp/jlawec/v21y1978i2p297-326.html
http://ideas.repec.org/a/aea/jecper/v12y1998i4p73-94.html
http://ideas.repec.org/a/aea/jecper/v12y1998i4p73-94.html
http://ideas.repec.org/a/ecm/emetrp/v52y1984i2p449-60.html
http://ideas.repec.org/a/ecm/emetrp/v52y1984i2p449-60.html
http://ideas.repec.org/a/ucp/jpolec/v94y1986i2p235-59.html
http://ideas.repec.org/a/ucp/jpolec/v94y1986i2p235-59.html
http://ideas.repec.org/p/pra/mprapa/6944.html
http://portal.acm.org/citation.cfm?id=1251254.1251264
http://portal.acm.org/citation.cfm?id=1251254.1251264
http://portal.acm.org/citation.cfm?id=646334.687814
http://www.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf
http://www.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf
www.software-cluster.org
www.software-cluster.org
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticbeanstalk/
http://aws.amazon.com/s3/
http://code.google.com/p/appscale
http://www.cloudkick.com/
http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/
http://www.salesforce.com/platform/
http://www.scaleupcloud.com/
http://spotcloud.com
http://www.zimory.com
http://code.google.com/p/boto/
http://incubator.apache.org/deltacloud/
http://github.com/geemus/fog
http://code.google.com/p/jclouds/
http://jets3t.s3.amazonaws.com/
http://incubator.apache.org/libcloud/
https://github.com/digitalreasoning/PyStratus/
http://incubator.apache.org/whirr/
http://cloud.com/
http://open.eucalyptus.com/
http://www.nimbusproject.org/
http://opennebula.org/
http://www.openstack.org/

	Introduction
	Background and Related Work
	Cloud Stack
	Cloud Software and Cloud Products
	Private Cloud Computing Software
	Cloud Marketplaces and Federation Offerings

	Economic Theory
	Vendor Lock-in
	Hold-up Problem and Underinvestment


	Cloud Federation
	Redundancy
	IaaS
	PaaS
	SaaS

	Migration

	Towards a Reference Architecture
	Two Perspectives on Interoperability
	Potential Reference Architecture Components

	Discussion
	Vendor Lock-In and Cloud Computing
	Future Work

	Conclusion
	Appendix

