Cloud Federation: Effects of Federated Compute Resources on Quality of Service
and Cost

David Bermbach
Karlsruhe Institute of Technology

Karlsruhe, Germany
david.bermbach@kit.edu

Abstract—Cloud Federation is one concept to confront chal-
lenges that still persist in Cloud Computing, such as vendor
lock-in or compliance requirements. The lack of a standardized
meaning for the term Cloud Federation has led to multiple
conflicting definitions and an unclear prospect of its possible
benefits.

Taking a client-side perspective on federated compute ser-
vices, we analyse how choosing a certain federation strategy
affects Quality of Service and cost of the resulting service or
application. Based on a use case, we experimentally prove our
analysis to be correct and describe the different trade-offs that
exist within each of the strategies.

I. INTRODUCTION

Over the last few years Cloud Computing has become
more and more adopted and most companies at least
consider some kind of cloud strategy. Typical motivations
are potential cost reductions, variabilization of fix costs,
increased availability through geographic distribution and,
hence, improved resilience to geographically limited faults,
flexibility and scalability.

However, these benefits come at a price: A customer is
typically tied closely to just one provider, when leveraging
the full potential of all provided features. This, of course,
implies a high degree of vendor lock-in where the customer
not only depends on the proprietary interfaces and APIs
specified by the provider but also employs a workforce of
specialists for that particular provider who are unlikely to
be able to work with a competitor’s cloud offering.

Another issue is trust: An IT infrastructure running in
the cloud is beyond physical control of the customer as
servers are owned and operated by the provider. Security
and compliance with data privacy laws are also of concern.
Surveys (e.g., [1]) show that this poses a problem for quite
a few potential customers who still hesitate to use cloud
computing.

This all, combined with the fact that using a single
provider introduces a single point of failure into one’s IT
landscape [3], can lead to underinvestment — a situation
described as the hold-up problem [9]. As such a situation is
not pareto-optimal it is desirable to address these concerns.

Tobias Kurze
Karlsruhe Institute of Technology
Karlsruhe, Germany
tobias.kurze @kit.edu

Stefan Tai
Karlsruhe Institute of Technology
Karlsruhe, Germany
stefan.tai @kit.edu

Cloud Federation [2], [4], [5], [12] has been proposed as
a way to address many of these problems. So far, there is an
abundance of work where federated storage services are used
and different cloud federation strategies have been identified
but it is relatively unclear which quality of service (QoS)
trade-offs exist between those strategies and how choosing
such a strategy may affect the amount of money spent on
cloud resources. Though, most people will be able to name
qualitative trade-offs but quantifying these QoS effects is an
entirely different story. With this work we hope to shed some
light onto the qualitative trade-offs and try to verify whether
common assumptions are actually true. In this work, we do
this for federated compute resources.

This work is structured as follows: In section II we
describe different compute federation strategies and analyze
how they affect select QoS attributes. Afterwards, in section
III, we verify our findings based on a use case which we
apply to all strategies before discussing trade-offs that we
have identified in section IV and comparing it to related
work in section V. Finally, we conclude this work with
section VI where we revisit our observations and point out
future work.

II. BACKGROUND

In [12] we defined cloud federation as using more than
one cloud service at the same time. Also, we proposed to
distinguish cloud federation along several dimensions:

1) Federation can occur within a layer of the technical
cloud computing stack [13] (i.e., as an example to
federate two infrastructure services) or across layers
(e.g., a platform as a service (PaaS) offering combined
with an Infrastructure as a Service (IaaS) offering).

2) For federation within the IaaS layer there are two main
kinds of services: compute and storage.

3) Cloud federation can happen for an unlimited (at least
regarding a near time horizon) or a limited period
of time. The first case is typically called redundancy
while the latter is called migration.

In this work, we want to focus on the redundant usage of
compute resources, i.e., on permanent federation of services
within the IaaS layer. We believe, though, that our results can

easily be transferred to migration scenarios. In [12], we have
identified five strategies for the redundant usage of compute
services which we will analyse in this section.

Furthermore, there are two main classes of application
workloads which differ in the way requests are created.
While in batch processing (also known as OLAP), as the
name already suggests, requests typically arrive in batches,
in customer facing applications (also known as OLTP) re-
quests are triggered one by one by a client. In the following,
we will focus on batch processing scenarios but we believe
that OLTP applications can be described similarly although
there might be additional requirements that need to be
considered.

A. Redundant Deployment (RD)

In this strategy, the same application logic is deployed
with different providers and usually also geographically
distributed. Then, requests are routed to one of the machines
which processes the request and responds afterwards to the
client.

The main motivation behind this approach is to remove
the single point of failure which exists in a scenario that
uses only one provider. This, of course, positively affects
availability. Furthermore, this approach is likely to improve
response times due to increased client proximity of the de-
ployments. Another motivation can be compliance with laws
and regulations which sometimes require to keep sensitive
data within a country.

RD offers a very high level of availability and an excellent
resilience to failures not caused by the application code
itself. It can be calculated as

A=1-]J0-4)
where A is the resulting availability of all deployments com-
bined and A; is the availability of deployment i. Concern-
ing scenarios that make requirements on request handling,
such as compliance with laws and regulations, availability
only refers to a subset of clouds, matching the demanded
requirements.

Another aspect is the part of the batch p; that is processed
by a particular cloud ¢ which is identical to the probability
of a particular request being processed in that cloud. If ¢;
denotes the mean value of the processing time per request in
cloud 7, then we can calculate the probability of processing
a particular request in cloud ¢ as

o = Hj;éi tj
P = =
Z;nnzl Hk;ﬁm tk

where n is the number of clouds involved. Using this
probability, we can deduce the expected value of the average

processing time as
T= sz‘ * b
i

Regarding cost, this strategy should be cost neutral com-
pared to having several instances with the same provider
as every instance is used as efficiently as possible. For
long term contractual commitments, though, this strategy can
boost cost if only small batches need to be processed.

B. Redundant Computation (RC)

In RC the same application logic is deployed to different
providers. In contrast to RD, though, every request is for-
warded to all clouds. Depending on the goal of this strategy,
we can then either wait for all results and compare them (RC
with Comparison) or use the first result which is returned
(RC without Comparison).

The latter helps to improve request latencies and reduces
the chance of a request timing out due to a crashed machine,
an approach also taken in Google’s MapReduce [8]. The first
strategy, in contrast, is useful if we do not particularly trust
a certain provider or if we fear that a machine might be
corrupted by a third party.

Regarding cost both RC strategies add a huge overhead
as all data is processed on all instances.

1) Redundant Computation with Comparison (RCC):
This scenario provides rather poor availability — the more
participating clouds, the lower the availability. It can be

calculated as
A=A
i

and all requests are processed in all clouds, i.e., the proba-
bility of processing a particular request in cloud ¢ is 100%.
The distribution of resulting processing times is basically
a convolution of all participating clouds’ processing time
distributions using the max operator.

2) Redundant Computation without Comparison (RCwC):
In contrast to RCC, this scenario provides excellent avail-
ability and performance — the more participating clouds, the
better availability and response times. While the availability
is identical to the RD scenario, the distribution of resulting
processing times is again a convolution of all participating
clouds’ processing time distributions, this time using the
man operator. This leads to high monetary costs as all
requests are processed in all clouds.

C. Farallel Computation (PC)

In PC the same or very similar application logic is de-
ployed to different providers. Incoming requests are broken
down at bit level so that each cloud processes only a subset
of the data. If subsets overlap, PC also allows validation of
correctness of the answers like in RCC.

There are two main goals for this scenario: First, for
sensitive data, processing only fragments guarantees that
a malevolent cloud provider sees only parts of the data.
Second, a fragment is smaller than the original data so that
processing becomes faster and PC can, hence, be expected
to complete faster than all other strategies. Processing only

fragments is also the main idea behind MapReduce [8]. Of
course, not every request can be processed on fragments of
data.

The distribution of the resulting processing time is again
a convolution of the participating clouds’ processing times
using the max operator and is, hence, vulnerable to hung
requests.

PC should generally be cost neutral as long as fragments
do not overlap.

1) Secure Parallel Computation (PCS): In this scenario
data is not only broken down at bit level but is also
encrypted. While this adds a small overhead, most of the
benefits of PC regarding performance persist. A downside,
though, is that there are only very few operations that can
be executed on encrypted data. Furthermore, the resulting
availability is again the product of all participating avail-
abilities.

2) Insecure Parallel Computation (PCI): This scenario is
very similar to PCS regarding performance and availability.
The difference is, that there are many more operations that
can process fragments of data compared to operations that
can process encrypted fragments. For example, it is still
possible to count faces in images when allowing overlapping
fragments. The first cloud could process the lower two
quarters, the second one the upper two quarters and yet
another one could process the middle two quarters.

III. EVALUATION

To evaluate whether our analytical results can also be seen
in experiments, we searched for a simple use case that works
for all scenarios. We decided on a service which takes a
random image as input and returns its monochrome version.
Since this affects only a single pixel at a time, this use
case is compatible with all strategies, even with PCS where
pixels are scrambled randomly using a one time pad before
fragmenting the scrambled image. Similar real-world use
cases that are compatible with most strategies (i.e., all but
PCS) could be face recognition in videos, pattern matching
for large text files, video encoding etc.

A. Experimental Setup

For testing we used an Amazon EC2 m1.xlarge instance'
in the region eu-west (Ireland) and an 1&1 Dynamic Cloud
Server 2 with 2 cores and 3GB RAM. We then measured
the distribution of processing times using just a single cloud
deployment before benchmarking all compute federation
strategies in a two cloud deployment. For each test run we
issued at least 50 requests from a standard laptop computer,
to simulate an on premises server, and sent it to one or
both cloud servers (depending on the strategy). Every request

laws.amazon.com/ec2

Zhosting. lund1.de/CloudDynamicServer

contained the same image. We repeated all test runs several
times without significant changes in the results®.

Client-side load balancing strategies depended on the
particular strategy that was benchmarked: For RD, all re-
quests were sent to a (local) queue and the cloud servers
dequeued the images one after the other. So, effectively
both servers were working in parallel at maximum resource
usage without any idle times. For both RC strategies a
request was broadcast to both servers at the same time. The
subsequent request was then sent after the first (or the second
respectively for RCC) server completed its request. For both
PC strategies, the images were fragmented and put into two
dedicated queues — one per server. Each cloud server then
pulled its requests from the corresponding queue, so that
both servers were effectively running in parallel. Note, that
both servers had to terminate at the same time, i.e., the faster
server incurred an idle time (in the end) of the difference
between both clouds’ total processing times.

After all test runs had been completed we used the
single cloud data as input for the formulas from section
II and compared it to the the results from the two cloud
benchmarks. So, in the following,

o experimental data describes the benchmarking results
from our two-cloud deployments and

o simulation data is created using Monte-Carlo simula-
tions of the two single-cloud deployments’ benchmark-
ing results and the formulas from section II.

As during the original test run most of the processing
time was spent on network 10, we also ran two variants of
the test where we added artificial delays on the server side:
the second scenario tried to compensate for the fact that
both the 1&1 server as well as the laptop computer were
both situated in Karlsruhe, Germany and added 500ms delay
to the Amazon instance and 1800ms to the 1&1 instance.
During initial test runs, this “delay configuration” resulted
in fairly similar total processing times for both clouds. The
third scenario, finally, even exceeded the second one by
having no delay for Amazon and fully two seconds for 1&1.
For the remainder of this paper, we will refer to those setups
as scenarios 1, 2 and 3. Our target was for scenario 1 to
have 1&1 run faster, for scenario 2 to have both clouds
comparably fast and for scenario 3 to have AWS run faster.

Please, note, that for our purposes neither the actual
performance of the clouds nor the performance differences
between both clouds matters. Our sole aim was to simulate
different compute instances and to evaluate whether our
observations from the previous section are correct.

3The actual performance varied over time up to 25% but did so
consistently for single cloud deployments as well as for the federation
tests so that in the end the ratio of benchmark and simulation results was
unaffected.

B. Findings

In the following, we show how experimental results for all
federation strategies compare to simulated results based on
single cloud processing times distributions and the equations
from section II.

1) Availability: None of our test runs encountered any
kind of inavailability of the cloud services. Hence, we cannot
use real world observations for proving the correctness
of our considerations. Instead, we artificially introduced
failures (i.e., killing the process on one of the servers) and in
every case the system showed the expected behavior, i.e., all
strategies apart from RD and RCwC became unavailable and
those two showed slightly poorer performance depending on
which instance was terminated.

2) Processing Time: While some simulation results for
the average processing time are highly accurate (especially
for RD and RCC) others show some larger deviations,
see Table II for details. One of the reasons is the time
difference between measuring single cloud values versus the
corresponding federation value for the different strategies.
As already mentioned above we saw random fluctuations
in processing times up to 25% for both single cloud and
federated deployments over a period of a few minutes.
The tests showing the highest degree of matching between
simulation and actual data are the ones where the single
cloud tests were run right before or after the federated tests.
Hence, our simulations reached an accuracy level with less
then 5% error.

For the PC strategies’ simulation we used half the values
measured during the initial single cloud deployments which
does neither consider the overhead for fragmenting the data
nor the overhead for establishing a connection. As a result,
our simulations were off by about 18% respectively 19% for
scenario 1 but got closer with about 2% error for scenario
2 and less than 1% for scenario 3. This is due to the fact,
that the artificial delay introduced stays constant no matter
how much deviation the actual data transfer and computation
durations show. Hence, the relative error decreases. Due
to fluctuations of e.g., network load during daytime, PCS
performed slightly better than PCI, even though PCS inflicts
an additional overhead. See table II for more details..

The same goes for RCwC which shows the same devel-
opment of relative deviations. Scenario 1 starts off with a
deviation of almost 11%, though, which can be explained by
the high performance of this strategy where small absolute
deviations amount to large relative errors. Nevertheless, we
believe that our results prove our considerations from section
II to be correct.

Comparing the different strategies, as expected RD runs
fastest as both servers reduce the number of jobs in parallel
while RCC is the slowest strategy. RCwC is somewhere in
the middle.

PC does not fit in as easily: For scenario 1 this is relatively
straightforward as both servers process only half the data but

Table I
JOB DISTRIBUTION USING REDUNDANT DEPLOYMENT

Scenario AWS 1&1
Scenario 1: Simulation 16.02% 83.98%
Scenario 1: Experiment 16.00% 84.00%
Scenario 2: Simulation 54.88% 45.12%
Scenario 2: Experiment 54.00% 46.00%
Scenario 3: Simulation 63.04% 36.96%
Scenario 3: Experiment 64.00% 36.00%

the slowest one determines the progress speed. As expected,
the total of two times the processing time for PC minus
a small overhead equals approximately RCC. For the other
two scenarios comparison is more difficult: Table II shows
the processing times for running the jobs with the full delays
each, even though each server processes only half the data.
The processing times include network latency, and basically
describes the time from when a request was sent till an
answer is received. So, it might be fairer to use only half
the delays (e.g., 250ms and 900ms for scenario 2) but this
depends on what the delays stand for. Full delays make
sense when the delays are for example the routing overhead
of some federating component (i.e., incurred on premises
and not in the cloud or on the way to there). Another
example could be a manual job approval process for each
task that applies fully to each request. Half the delays make
sense when they stand for slow processing or data transfer
according to the linear complexity of our sample usecase.
Still, there are usecases with non-linear complexity where
even other fractions of the delays might make sense.

3) Probability of Processing in Cloud i: In a RCC or PC
setup every request is processed by every participating in-
stance. Therefore, the probability that a request is processed
in Cloud ¢ equals 1 for all <.

The same applies to RCwC where all requests are at least
sent to all instances, though, the requests may not be fully
executed. We were able to observe exactly the expected
behavior during all our test runs.

For RD the matter is more complicated. As stated before,
we used a single queue from which jobs were submitted to
two instances as our test setup. Since the two instances had
different configurations in terms of virtual hardware as well
as network connectivity, we observed an unequal distribution
of jobs between the clouds. Depending on the scenario,
either the AWS instance or the 1&1 instance handled a
larger share of the jobs. Using a Monte-Carlo simulation
we got a very good approximation of the actual experimental
distribution of jobs. Table I gives an overview of the test and
the simulation results.

4) Cost: To calculate the costs of our test setup, we
considered every aspect that may affect costs, such as
instance hours and network traffic charges or free tiers. A
huge difference between the cost models of Amazon and

Table II
PROCESSING TIMES FOR DIFFERENT FEDERATION STRATEGIES COMPARING RESULTS FROM SIMULATION AND EXPERIMENT

Scenario 1 Scenario 2 Scenario 3
Strategy Exp. Sim. Error Exp. Sim. Error Exp. Sim. Error
RD 283ms 283ms 0.23% 970ms 942ms -4.69% 846ms 855ms 1.01%
RCC 180Ims 1722ms -433% 2088ms 2054ms -1.59% 2286ms 2300ms 0.63%
RCwC 384ms 342ms -10.81% 1772ms 1683ms -5.03% 1622ms 1636ms 0.84%
PCS 1057ms 863ms -18.34% 1967ms 1927ms -2.02% 2170ms 2175ms 0.26%
PCI 1067ms 863ms -19.04% 1968ms 1927ms -2.09% 2195ms 2175ms -0.88%

1&1 is that 1&1’s Dynamic Cloud server has a monthly
subscription model. There is no pay-as-you-go alternative
yet, though, in some long-running scenarios it might be less
expensive to use fix-cost based offerings. Amazon also offers
so-called reserved instances which come at fixed reservation
price plus a reduced variable rate for the actual usage hours.
We considered this in our cost calculations and chose the
cheapest alternative respectively.*

As expected, RD is the most cost-efficient strategy. It is
also the only strategy that, for 10 million images, is still
less expensive when using Amazon on-demand instances
instead of reserved instances. RC strategies profit more or
less considerably from using reserved instances — at least for
such a huge batch size. Figure 1 show a cost comparison of
the different strategies for all three scenarios.

On the other end, RCC is the most expensive strategy as
all requests are executed on all instances. Hence, the slowest
instance determines how long all servers need to be running.
RCwC on the other hand depends on the performance
differences between the servers. For example, in scenario
2, where both servers show almost identical performance,
this strategy costs almost the same as RCC. Basically, the
cost can be approximated as the cost for having the fastest
server process all requests plus the cost of having all other
servers running idle (when ignoring cost for traffic etc.).

For PC, the calculation is a bit more difficult in terms of
fairness regarding the delays as we already pointed out in our
discussion of the processing times. One thing can be seen
independent of the choice of delays: Security adds another
small overhead in terms of cost which is not surprising
considering the fact that it directly adds a processing time
overhead.

IV. DISCUSSION

In section III we proved the formulas from section II to
be correct and provided simulated as well as experimental
results. We also indicated the theoretical costs involved
with different federation strategies and scenarios. For our
analysed QoS properties it really depends on the chosen
federation strategy whether there exists a true monetary

“4For cross-currency conversion we used the EUR-USD exchange rate of
February 9, 2012 and observations are based on the available offerings and
prices of the same date.

trade-off or whether spending more money actually proves
counter-productive as there are other more hidden trade-offs
involved. In the following we will analyse these trade-offs
for each of the strategies.

A. Redundant Deployment

In RD adding more servers increases the total availability
and improves the expected processing time. So, there is
a direct trade-off between cost and availability as well as
cost and processing time. Once, certain availability and
processing time requirements have been identified it is easily
possible to choose an optimal set of providers, e.g., using
the methods of Menzel et al. [15]. This strategy does not
increase correctness of results or security. Rather it might
corrupt the latter as using multiple providers increases the
risk of a malevolent provider.

B. Redundant Computation with Comparison

Here, using more providers and, hence, adding more
servers actually decreases the availability of the service and
increases the processing times. Also, adding more providers
again increases the likelihood of a malevolent provider, thus,
potentially corrupting security. At the same time, this is the
only federation strategy which allows to increase correctness
(or rather the probability of having correct results). So,
depending on the required level of correctness the minimum
number of providers fulfilling that requirement should be
chosen.

C. Redundant Computation without Comparison

Following this strategy, using more providers both in-
creases availability as well as speeds up processing times. It
is especially useful against peaks for single requests due
to a hung instance or similar reasons as there is always
at least one backup. The price one has to pay for this,
though, is high in terms of monetary cost as having multiple
instances complete the same task is completely inefficient.
So, there is a direct trade-off between availability, resilience
to processing time peaks as well as processing time (though
weaker than with RD) and cost. Like in RD, this strategy
does not affect correctness of results but might negatively
affect security.

$10,000.00
—8—-RD —=+=RCC ——RCWC —5-PCS —#—=PCI

/,

$1,000.00

Costs

$100.00
10,000 100,000 1,000,000

#Images

10,000,000

(a) Scenario 1

$10,000 00

—W—RD —==RCC ——RCWC -PCS——4=PClI

$1.000.00

Costs

F$100.00
10,000 100,000 1,000,000

#Images

(b) Scenario 2

10,000,000

$10,000.00

—-RD —=RCC ——RCwWC —&-PCS ——PC|

$1,000.00

Costs

$100.00
10,000

100,000
#Images

1,000,000 10,000,000

(c) Scenario 3

Figure 1.

Table III
INFLUENCE OF FEDERATION STRATEGIES ON QOS

QoS Characteristics

Strategy Availability =~ Security Performance Correctness Cost
RD ++ - ++ o ++
RCC -- - -- ++ --
RCwC ++ - + o -
PCS Ry ++ - ol/+? ++
PCI 42 + o'/2 ol/+? ++

IDisjunct requests
2Overlapping requests

D. Parallel Computation (Insecure)

Here, adding more providers improves processing times.
Depending on whether fragments overlap, it also increases
(if they do) or decreases availability (if they do not). Again,
if parts overlap this can also improve correctness of the
results and security is positively affected. So, if fragments
overlap, it is only a matter of money to reach the desired QoS
levels. If not, there is a trade-off between the desired level
of security and processing performance against availability
and cost. Furthermore, this strategy is not applicable to all
use cases.

As a side note: PCI is partly a misnomer as it actually
increases security compared to a single cloud deployment.
We nevertheless chose the name to point out the difference
to PCS where additional encryption is used.

E. Parallel Computation (Secure)

For this strategy, the same holds as for PCI. The only
changes are that there is a very small monetary surcharge for
creating near perfect security as well as a small processing
overhead. Also, there are even less use cases where this
strategy can be used.

Table III gives an overview how each of the federation
strategies affects the discussed QoS characteristics compared
to a non-federated deployment.

Calculated costs for scenarios 1 to 3

V. RELATED WORK

In [12] we focused on a customer perspective and ana-
lyzed federation strategies accordingly, i.e., pointed out their
advantages from a customer’s point of view to avoid vendor
lock-in or increase security, for example. This fact was
also reflected in our vision of a potential cloud federation
architecture.

In contrast to our approach, there are some alternatives
that focus on the provider’s perspective. [10], [11] propose
federated clouds to enable the in- and outsourcing of work-
loads between different clouds in order to enhance provider
profit. To establish such as system, a global scheduling layer
is proposed and certain components have to be in place at
the providers’ sites. So-called federated cloud providers are
able to interact and to exchange workload.

Another federation approach that aims to add new func-
tionalities to cloud providers has been proposed by Celesti
et al. [7]. In the described cross-cloud federation scenario
a cloud operator is able to request further computing and
storage capabilities from other clouds, allowing to satisfy
additional service requests via a so-called Cross-Cloud Fed-
eration Manager placed inside cloud architectures.

A broker-based federation approach has been proposed
by Villegas et al. [17]. Incoming customer requests sent to
one cloud might be fulfilled by another cloud, mediated by
a brokering structure. One aspect of the proposed model is
that federation occurs between cloud providers at matching
layers of the service stack. This enables isolation between
brokering strategies at different layers of the cloud stack.

Zimory ° offers a cloud marketplace where excess dat-
acenter capacities can be offered as cloud computing re-
sources. This is similar to the broker-based approach of
Villegas et al. [17] but aims to hide the actual federation.

The Paa$S offering Cloud Foundry ¢ supports deployment

on several infrastructure clouds 7. So far, to our knowledge,
5 zimory.com

6cloudfoundry.com

7 gigaom.com/cloud/cloud-foundry-lets-apps-span-cloud-providers

only the Redundant Deployment strategy has been imple-
mented.

This paper is focused on the client-side federation of
compute resources where to our knowledge exist only very
little work. Other areas like federated storage have been
covered extensively, though, e.g.: [2], [4]-[6], [14], [16].

VI. CONCLUSION

This paper is intended as a logical successor to our
previous work [12]. Hence, we started with a short recap
of the five compute redundancy strategies before analysing
how these strategies each affect availability, processing time,
job distribution on different clouds, correctness of results,
security and cost. Where applicable, we presented formulas
to calculate or approximate the degree of quality.

Next, we measured each quality level for single cloud
deployment as well as for each federation strategy using a
usecase in three different scenarios. Based on these results
we then showed that our formulas from section II are valid.

As a final contribution, we used our experimental obser-
vations to point out the main trade-offs in the five federation
strategies. To our knowledge there is no prior work that takes
a client-side perspective on federation of compute services
in the cloud which we pointed out when discussing related
work.

Future work should develop best-practices, reference ar-
chitectures and corresponding frameworks for actually im-
plementing the different federation strategies further extend-
ing previous considerations in [12]. Other relevant questions
could be how to decide on a particular strategy or how to
change a running system from a single cloud deployment or
a federated deployment to another federation strategy.

As we pointed out, different kinds of failures can occur,
ranging from software failures to network partitionings.
Future work should analyse how different failure scenarios
affect the QoS levels for each of the federation strategies. Fi-
nally, all future work we just discussed should be transferred
to storage services (though there already is some work on
federated storage) and it is still unclear how cloud federation
is possible for both the PaaS and the SaaS layer.

ACKNOWLEDGMENT
We would like to thank Amazon Web Services and 1&1

who provided cloud resources for our experiments.

REFERENCES

[1] Microsoft: Smb hosted it commentary report, 2010.

[2] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon.
RACS: a case for cloud storage diversity. In SOCC. ACM,
2010.

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kon-
winski, H. Lee, D. Patterson, A. Rabkin, 1. Stoica, et al.
Above the Clouds: A Berkeley View of Cloud Computing.
UC Berkeley, 20009.

(4]

(3]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Bermbach, M. Klems, M. Menzel, and S. Tai. Metastorage:
A federated cloud storage system to manage consistency-
latency tradeoffs. In /EEE CLOUD. IEEE, 2011.

K. Bowers, A. Juels, and A. Oprea. HAIL: A high-availability
and integrity layer for cloud storage. In CCS. ACM, 2009.

Broberg, Buyya, and Tari. Creating a Cloud Storage Mashup
for High Performance, Low Cost Content Delivery. In ICSOC
2008 Workshops, pages 178—183. Springer, 2009.

A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to
enhance cloud architectures to enable cross-federation. /EEE
CLOUD, pages 337-345, 2010.

J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. Communications of the ACM,
51(1):107-113, 2008.

C. Ewerhart and P. W. Schmitz. Der lock in effekt und das
hold up problem. MPRA Paper 6944, University Library of
Munich, Germany, 1997.

I. Goiri, J. Guitart, and J. Torres. Characterizing cloud
federation for enhancing providers’ profit. In /JEEE CLOUD.
1EEE, 2010.

i. Goiri, J. Guitart, and J. Torres. Economic model of a cloud
provider operating in a federated cloud. Information Systems
Frontiers, pages 1-17, 2011.

T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and
M. Kunze. Cloud federation. In CLOUD COMPUTING 2011,
pages 32-38, 2011.

A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm.
What’s inside the Cloud? An architectural map of the Cloud
landscape. In ICSE 2009 Workshops, pages 23-31. IEEE,
2009.

I. Livenson and E. Laure. Towards transparent integration
of heterogeneous cloud storage platforms. In DIDC. ACM,
2011.

M. Menzel, M. Schonherr, J. Nimis, and S. Tai. (mc?)%:
A generic decision-making framework and its application to
cloud computing. In CCV, Singapore, Mai 2010. GSTFE.

S. Sakr, L. Zhao, H. Wada, and A. Liu. Clouddb autoadmin:
Towards a truly elastic cloud-based data store. In ICWS, pages
732-733. IEEE, 2011.

D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu,
A. Devarakonda, L. Fong, S. M. Sadjadi, and M. Parashar.
Cloud federation in a layered service model. Journal of
Computer and System Sciences, 2012.

