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Abstract—Applications often have consistency requirements
beyond those guaranteed by the underlying eventually consis-
tent storage system. In this work, we present an approach that
guarantees monotonic read consistency and read your writes
consistency by running a special middleware component on
the same server as the application. We evaluate our approach
using both simulation and real world experiments on Cloud
storage systems.
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I. INTRODUCTION

Over the last few years, the success of the internet, web
2.0 and the resulting need for scalable software systems
has triggered the development of an entirely new class of
storage systems which are usually referred to as NoSQL
systems [1]–[6] since their query interface is Not only
SQL. As mandated by Brewer’s CAP theorem [7] and the
PACELC model [8], they relax consistency guarantees in
favor of latency and availability. Since cloud storage systems
have the same quality of service (QoS) requirements, namely
scalability, low latency, high availability, most of these sys-
tems typically also offer only weak consistency guarantees
– a fact which can also be shown experimentally [9], [10].

Developing applications on top of only eventually con-
sistent data stores is non-trivial as it is not possible to rely
on correctness of data read from a data store: Results may
be stale or replicas may have reordered requests before
executing them, repeated reads may not yield the same
results etc. While staleness is often not as critical, ordering is
– so-called client-centric consistency guarantees (e.g., being
able to read one’s own writes) ease application development
a lot.

These guarantees are hard to provide by a storage system
as they can often only be realized by strictly consistent
storage systems (usually not an option) or session stickiness.
The latter can become an issue in the presence of failures
or extensive load variability. Another alternative is shipping
huge dependency trees with each update and executing
only when all dependencies are fulfilled [11]. Of course,
this is rather complex to implement (and, hence, prone to
programming errors) and introduces an overhead in terms

of data sent around. Also, as updates are potentially delayed
often, staleness increases.

All in all, client-centric consistency guarantees are hard
to provide by the storage system so that it is usually not
feasible to do so. To our knowledge, no cloud storage service
(i.e., a hosted service) exists which guarantees any kind of
client-centric concistency.

We propose to implement these guarantees in a mid-
dleware layer running on the same server-side machine
as an application. This application can then easily extend
those guarantees to its individual end users via standard
session handling mechanisms as state can then be handled
entirely locally on the application’s server. We argue that
this approach introduces only a small overhead.

Another aspect is concurrent updates: Existing cloud data
stores use a last write wins strategy, i.e., in the presence
of concurrent updates writes are often lost, which is hard to
handle in applications without the end user noticing. Imagine
a web-based collaborative document editing application like
Google Docs1: Two users edit a document at the same time
and send their changes to the application which then saves
them to the storage system. One of those edits will be
overwritten by the other, even though both are valid. A better
way would be to merge both versions upon a later read –
but each user should be able to always see his or her own
changes, no matter what the internal state of the storage
system or even the application is.

So, the problem an application developer faces is, that
distributed storage systems (and cloud storage services in
particular) offer only weak or no consistency guarantees at
all. At the same time, applications have certain consistency
requirements and cannot get any guarantees from the cloud
storage system which is typically accessed as a black box.
Even if the storage system in question is not a cloud storage
service but rather a self-hosted NoSQL system, application
developers will rarely have time and insight to change the
behavior of the storage system. NoSQL systems like Apache
Cassandra [5] allow to specify different consistency levels
per request but even a consistency level of ALL for all

1docs.google.com



requests will not necessarily always guarantee client-centric
consistency, especially in the presence of failures.

In this work, we present an approach that guarantees
monotonic read consistency and read your writes consistency
by running a special middleware service on the same server
as the application. It can be run with any kind of eventually
consistent data store and shows to the client the same
behavior as a causally consistent data store, i.e., it creates the
client-side illusion of a causally consistent data store. Our
approach is intended for a scenario, where a set of servers
running both our middleware service and the application
code uses an eventually consistent storage system accessed
as a black box. End users communicate with the application
using thin clients.

We start by describing several consistency models and
their implications to applications in section II, before pre-
senting our approach and implementation in section III. We
also provide a formal proof regarding our claim of giving
the illusion of causal consistency. Next, we evaluate our
approach using both simulation and real world experiments
with a sample application in section IV, before discussing re-
lated work and finally coming to a conclusion in section VI.

II. BACKGROUND

In this section, we will discuss existing consistency mod-
els. These models always comprise two roles: a storage
system and a set of clients interacting with the storage
system. A client does not need to be an end user but rather
refers to any machine that issues requests to the storage
system. For our approach, a client, hence, is an application
server. In this section, we will use the generic term client as
the models presented do not depend on the kind of the client
(application server, end user etc.). The only requirement for
the presented models is that a client directly interacts with
the storage system.

There are two main perspectives on consistency: data-
centric and client-centric consistency [12]. While data-
centric consistency guarantees focus on the internal state of a
storage system, i.e., all replicas being identical, client-centric
consistency guarantees focus on the consistency properties
visible to a client having only black box access to a storage
system. Therefor, data-centric consistency guarantees are im-
portant to system developers while to application developers
only client-centric guarantees matter. Often, a system may
appear consistent to a client at a point in time where data-
centric consistency has not been reached, yet. An example
would be, having one stale replica and accessing more than
one replica for every read. Combined with means to identify
the ordering of different versions (e.g., vector clocks) the
client will never observe the data-centric inconsistency.

Please, note, that eventually consistent storage systems do
not use locking mechanisms and, therefore, allow concurrent
updates.

Apart from the two perspectives, there are also two
dimensions of consistency: staleness and ordering. Staleness
is a consistency property that can be observed both as a
data-centric or client-centric guarantee. The client-centric
staleness values are less than or equal to the data-centric
staleness values [9]. But as long as staleness values are small
they often do not matter to applications (there are exceptions,
though). For example, if refreshing your email inbox shows
you a new email you will never notice that your previous
refresh simply read a stale replica.

An entirely different story is the ordering dimension of
consistency [13]. To stick with the example of the email
inbox: Imagine a situation where refreshing your inbox
hides some unread emails that you were able to see before.
This is a violation of monotonic read consistency – a
guarantee which only addresses ordering of requests but not
staleness. There are four main ordering guarantees which
can be visible to a client (hence, client-centric consistency
guarantees) [14]:
• Monotonic read consistency (MRC): After reading ver-

sion n, the same client will never again read a version
< n.

• Read your writes consistency (RYWC): After writing
version n, the same client will never again read a
version < n.

• Monotonic writes consistency (MWC): All writes by
the same client will be serialized in their chronologic
order, i.e., if there are two consecutive writes by the
same client and a replica has already written the value
of the second write, then this value will not be over-
written once the first write arrives at the replica.

• Write follows read consistency (WFRC): When a client
has read version n and updates the value he has read
(thus, essentially writing version n + 1), the update is
guaranteed to execute only on replicas with a version
number of at least n.

In general, eventually consistent storage systems (i.e.,
storage systems that do not guarantee strict consistency) can
have inconsistencies (a) due to failures, (b) due to update
propagation delays and message reordering and (c) due to
concurrent updates.

It is usually not possible to resolve conflicts resulting from
concurrent updates in the storage system as this requires
application-specific knowledge on the semantics of the data
items. For this purpose, we propose to relax the definitions
from above slightly: A client still observes MRC or RYWC
if the read result set of returned data items contains at least
one version that fulfils the required guarantees. This means,
for example, that for MRC (after a read of version n), it
is acceptable to return a version ≥ n plus any conflicting
version branches.

Brzezinski et al. [15] show that MRC, RYWC, MWC
and WFRC combined can only be guaranteed by a storage
system guaranteeing causal consistency (CC) which is one of



the strongest data-centric consistency guarantees apart from
strict consistency and sequential consistency. CC requires
that all requests that are causally related are executed on all
replicas in the same order. Two requests o and p are causally
related if (a) both are issued by the same client, (b) if o is
a write and p returns the result of o or (c) if there exists
an operation x so that p depends on x and x depends on
o (transitivity). If either of those conditions hold, o will be
executed before p on all replicas.

III. APPROACH

In the following, we will describe how consistency guar-
antees of an eventually consistent storage system can be
increased using an external middleware service running on
the same machine as the application.

Our approach includes several roles apart from the storage
system (see figure 1 for a high level overview of the scenario
we want to address):

1) App server: An application with consistency require-
ments beyond those guaranteed by the storage system
is running on one or more machines. A single server
running application code is called an app server. App
servers do not need to interact directly but may of
course do so.

2) Library: The middleware service which we propose is
currently implemented as a library (hence, the name)
which can be used directly within the application.
Each app server uses its own library instance running
on the same machine. Library instances do not need to
communicate with other library instances. App server
requests to the storage system are routed via the
library.

3) End user: An end user usually uses a software client
(e.g., a browser) to interact with one app server
instance. This software client is running on a different
machine than all app servers or the storage system. To
avoid confusion, we will use the term end user for the
software client and the underlying physical device the
actual end user is using.

As an example setup: Amazon S32 could be used as the
storage system. The app servers could be distributed over
multiple compute clouds and on-premises servers running a
standard web application (e.g., an internet forum). End users
of said web application might access the web application via
browsers on their desktop computers or mobile devices.

Vector clocks are a well known mechanism to capture
causality. In the context of eventually consistent distributed
storage systems, they can be used to describe a version his-
tory like, e.g., in Amazon Dynamo [3]. Whenever conflicting
versions exist on some replica, it is then possible to resolve
all conflicts automatically that were not caused by concurrent

2aws.amazon.com/s3

Figure 1. Intended Use Case

updates (e.g., conflicts caused by update propagation delays
or fail-recover errors).

Our approach uses vector clocks to identify (a) which
version was last seen by a particular app server and (b)
which version was last written by a particular app server.
This allows to create a total order for all writes by the same
app server (a prerequisite for MWC and WFRC) and for
writes that update another app server’s write upon reading
it (a prerequisite for CC). It also allows to check whether
MRC and RYWC are violated or not. The data itself and
the corresponding vector clock metadata are persisted under
the same key.

Now, as some inconsistencies can be identified, the app
server at least knows about them. This leaves the issue of
dealing with them which we propose to do via client-side
caching, i.e., on the app server.
• Whenever an app server requests a datum from the

storage system, the library reads from the storage
system and adds a copy of that datum to its local cache
if the cache does not already contain that datum in
that exact version (identified by its vector clock). Older
versions superseded by the data read from the storage
system are replaced in the cache and all conflicting
versions are returned to the app server. The app server is
then expected to merge conflicting versions (this could
even be dropping all but one version) at application
level considering the semantics of the data. This conflict
resolution scheme is similar to the approach taken in
Amazon Dynamo [3].

• Whenever an app server requests a write following
a read, the library assigns a vector clock value that
supersedes all cached values of that datum and writes
it to the storage system. Afterwards, the library replaces
all cached versions with the value and vector clock it
just wrote to the storage system.



• Whenever an app server spontaneously writes a value,
the library assigns a vector clock that is in conflict with
all cached values to guarantee that no versions are lost
due to this concurrent update. It then adds the data to
the local cache and writes it to the storage system.

• Storage systems guaranteeing CC, typically capture
only internal causality but not external causality [12]
where a client of the storage system gets to know a
new version not via the storage system but rather using
external means of communication with another client.
To also capture external causality, the library offers
a notification feature which allows the app server to
update the cache directly. As long as the app server
uses this feature whenever he gets knowledge of an
update using external means of communication, the
library guarantees to capture external causility as well.

Our approach guarantees MRC and RYWC and creates the
client-side (i.e., at the app server) illusion of per key CC3

as so-called session consistency, i.e., guarantees exist for the
duration of a session but not beyond. A session is initiated
by an app server and ends either if the app server terminates
the session, if the app server fails or if the cache fails.
Furthermore, while a library outside of the storage system
cannot guarantee MWC4 it certainly helps towards that goal
by reissuing “all” writes in correct order with every update,
thus, increasing the probability of correct serialization within
the storage system. The same holds true for WFRC.

Commercial cloud storage offerings typically return only
one version, using a last write wins strategy internally. This
can result in potentially many lost updates based on the rate
of concurrent updates. Our approach avoids this completely
as long as there is for every update at least one session which
holds that update within its local cache.

A. Overhead and Intended Use Case

Our approach adds some overheads: First, there is a
storage overhead for persisting the vector clocks within
the storage system (which will typically create additional
cost for cloud storage systems). Second, there is a compute
overhead involved for every read as at least two vector clocks
need to be compared. Third, there is another (local) storage
overhead for keeping a persistent local cache.

The first overhead for persisting the vector clocks is
negligible for most scenarios. A vector clock containing
100 entries, for example, requires less than 500 Bytes in its
current (not very efficient) implementation. The size could
be further reduced using, e.g., compression.

The second overhead for comparing vector clocks directly
depends on the number of entries in the respective vector

3We cannot actually guarantee CC without having control over the
storage system itself, but to the app server our library guarantees the same
behavior as the storage system would do if it offered CC.

4It cannot affect the behavior of the storage system which may just decide
to drop arbitrary updates.

clocks. Therefore, it is desirable to keep the number of app
servers relatively small – since a typical app server should
be able to handle hundreds or thousands of end users in
parallel, the number of app servers is small compared to the
number of end users served. With today’s server’s compute
power, the second overhead should, hence, not become an
issue. Furthermore, the size of the vector clock does not
directly depend on the number of app servers involved but
on the number of app servers issuing writes. Hence, read-
heavy workloads should not create any problem at all while
for write-heavy workloads there could be mechanisms like
routing updates for a certain key always via the same app
server to further reduce the number of vector clock entries.

In our intended use case, the third overhead (storage
cost of the local cache) does not really matter: A set of
independent app servers interacts with a storage system
using our library. As app servers typically do not persist
data locally (apart from log files), the local hard disk drive
should be more or less unused and can, hence, be used for a
local cache without or with little side effects. Furthermore,
there is a relation between the update frequency and the
size of a datum: Small files are updated frequently while
very large files are mostly write-once data. Thus, the third
overhead of keeping a persistent local cache should become
negligible as well as only small files need to be cached.

Even though the decision might be different for different
applications, we believe that typically the consistency ben-
efits far outweigh the overheads incurred. Our approach is
especially helpful, if there is a huge number of concurrent
requests to only a few keys with small data items. The
smaller the size and number of the data items, the more
feasible is our approach. If there are only a few concurrent
updates, the feasibility of using our approach depends on
whether the data store guarantees MRC. To our knowledge,
no cloud storage service or production-ready open source
system exists that can give these guarantees. So, we believe it
is safe to say that any scenario where data items are updated
from time to time (instead of being written only once), can
benefit from using our approach.

B. Handling Sessions

From a quality of service perspective, the consistency
guarantees of the library should be extended to the end user
as he is the one who will be irritated if unread emails vanish,
he cannot read the blog comment he just posted and so on.
At the same time, the local cache might grow over time
as more and more data items from the storage system are
accessed by the end users. Also, conflicting versions need
additional space. To limit the size of the local cache, we
propose the following approach to session handling:

1) Start a library session on the app server.
2) Accept end user requests and hold sessions with them

using standard session management features of the app
server.



3) When the local cache has grown too much, restart from
step 1 and accept new end user sessions only within
the scope of the new session.

4) Terminate the old library session as soon as all end
user sessions have completed.

When the main goal is avoiding lost updates, then another
strategy would be to drop items from the cache as soon
as an update to the respective app server’s write has been
read by that same app server. This works because reading
an update guarantees that another app server has included
the own value in its cache. Of course, while this avoids lost
updates and keeps the cache small, it does not address MRC
or RYWC.

If there is only one app server (i.e., no concurrent up-
dates), this app server can still benefit from the MRC and
RYWC guarantees. In that particular case, the cache size
can be limited if the maximum inconsistency window is
known, e.g., via consistency benchmarking. Items can be
dropped from the cache when the last update to them has
been executed more than t units of time ago, where t is the
duration of the inconsistency window plus a safety margin.

C. Consistency Guarantees
We show that the usage of the provided library guarantees

the same client-centric consistency levels as a storage system
that implements causal consistency. In the following, Ci

stands for app server number i. This is without loss of
generality as the same guarantees hold for any client of a
storage system using our library.

Definition (Operations) 1: Let OLi denote the set of op-
erations of a library Li. We refer to the operations them-
selves as:
• wi(x)v - request of Ci to perform a write operation

under key x and value v.
• ri(x)v - request of Ci to perform a read operation under

key x and value v.
• oi(x)v request of Ci to perform any operation under

key x and value v.
Definition (Vector Clocks) 1: We refer to the vector clock

of an operation oi(x)v as vc(oi(x)v) ∈ V C where V C
denotes the set of vector clocks visible to a single library.
The binary relation < imposes a linear order on the set V C.
We call < the data-centric view order.

Definition (App server’s View Order) 1: The binary rela-
tion Ci7→ orders the views on results of write operation for an
app server Ci. We refer to 7→ as app server’s view order.

THEOREM 1: The library gives the same consistency
guarantees as a storage system that guarantees causal con-
sistency.

Proof: Causal consistency requires that the view order
of a client (in our case of an app server) on operations
follows the causal order of operations [15]. An operation
o1 causally precedes an operation o2 (o1 ; o2) if one of
the following conditions hold [15], [16]:

∃Cj
(o1

Cj
⇁ o2) (1)

o1 = w(x)v ∧ o2 = r(x)v (2)

∃o∈O (o1 ; o ∧ o ; o2) (3)

We use the notation oa ; ob|(1) to denote that operation
oa causally precedes operation ob according to condition
(1). At the client-side, a storage system guarantees causal
consistency if the following condition is preserved [15]:

∀Ci
∀o1,o2∈OW∪OCi

(
o1 ; o2 ⇒ o1

Ci7→ o2

)
(4)

It is necessary to show that the library provides a causally
consistent view on operations for all app servers according
to (4). Consequently, we consider the different conditions
for causal ordering (1)-(3).

1) We show that a causally consistent view is preserved
if two operations are of causal order according to (1).

Proof: We assume that an app server Cj requests
two consecutive write operations w(x)a and w(x)b for
key x: w(x)a

Cj
⇁ w(x)b. By contradiction, we assume

that an app server Ci exists that views the result of
w(x)a after the result of w(x)b: w(x)b

Ci7→ w(x)a.
We consider the two cases that the library reads
w(x)a from the cache and remote storage after reading
w(x)b.

a) We assume the cache returns the result of w(x)a.
In order for the local cache to return the re-
sult of w(x)a after the result of w(x)b, the
following condition must hold: vc(w(x)b) <
vc(w(x)a) which leads to contradiction because
of w(x)a

Cj
⇁ w(x)b which implies vc(w(x)a) <

vc(w(x)b).
b) We assume the remote storage returns the result

of w(x)a. The assumption that the cache returns
the result of w(x)a leads to contradiction accord-
ing to 1a). We assume that the cache returns the
result of w(x)b and the library returns the result
of w(x)a. This implies vc(w(x)b) < vc(w(x)a)
which leads to contradiction according to 1a).

2) A causally consistent view is preserved for Ci if o1 ;

o2 according to (2).
Proof: As the read does not change the state, the

results of both o1 and o2 are identical. Hence, the app
server’s view order can never be violated.

3) A causally consistent view is preserved for Ci if o1 ;

o2 according to (3).
Proof: Transitivity of the causally precedes rela-

tion ; is generally guaranteed by the linear ordering
of the ordering relation < over the set of vector clocks



V C. For the sake of completeness, we conduct the
proof as follows:
We assume that an operation o1 precedes an operation
o according to condition (1) or (2). Furthermore, we
assume operations o precedes operation o2 according
to condition (1) or (2). By contradiction we assume:
o2

Ci7→ o1. Therefore, four different cases should satisfy
the condition (3) based on the assumptions made.

a) o1 ; o|(1) ∧ o ; o2|(1), i.e., all operations are
writes by the same app server: This case leads
to contradiction according to the proof of (1) as
the < relation on the vector clocks is transitive
itself.

b) o1 ; o|(1) ∧ o ; o2|(2), i.e., o1 and o are
writes by the same app server, o2 is a read by
another app server: According to the proof of
(2), o and o2 have the same result which leads
to contradiction according to the proof of (1).

c) o1 ; o|(2) ∧ o ; o2|(1), i.e. o1 is a write and
o and o2 are a read and a write by another app
server:
We assume Cj orders a write operation w(x)a
and any app server Ck views the result of the
write operation w(x)a before updating the value
with w(x)b: ∃Cjw(x)a ∧ ∃Ck

r(x)a
Ck⇁ w(x)b.

We assume by contradiction that an app server
Cn exists that views the result of w(x)a after the
result of w(x)b: w(x)b Cn7→ w(x)a.
We consider the two cases that the library views
the result of w(x)a from the cache and remote
storage after returning the result of w(x)b to any
client Cn.

i) We assume the cache returns the result of
w(x)a. Since Cn has already seen the result
of w(x)b (either because he issued w(x)b
or because he read the result of w(x)b), the
cache contains the result of w(x)b and must
return w(x)b as vc(w(x)a) < vc(w(x)b).
This leads to contradiction.

ii) We assume the remote storage returns the
result of w(x)a: According to 3ci), the
cache returns w(x)b. Because vc(w(x)a) <
vc(w(x)b), the library always returns w(x)b
which contradicts the original assumption of
w(x)b

Cn7→ w(x)a.

d) o1 ; o|(2) ∧ o ; o2|(2): This case leads to
contradiction according to the proof of (2) as o
would have to be a write and a read at the same
time which is not possible.

Figure 2. Basic Library Architecture

D. Implementation

Our approach has been prototypically implemented as a
Java 6 library. Users can start one or more sessions with the
same or different storage systems, each using its own local
cache which is persistently written to disk. This is done via
the ConsistencyManager singleton. Within the scope of a
session, it is then possible to interact with cache and data
stores using an adapter framework which offers operations
to read, write and delete data items. Currently, adapters exist
for the Amazon services S35, DynamoDB6 and SimpleDB7

– additional adapters just have to implement an interface
and specify a mapping of multi-dimensional keys to the
underlying data store. Figure 2 shows a high-level overview
of the library’s architecture.

Whenever a session is terminated (either directly by the
user or indirectly via a crash of one or more components),
the cache on the local disk is removed.

IV. EVALUATION

To evaluate our approach as well as to test our library
we first implemented and used a simulation environment to
verify that our approach works under adverse conditions.
Afterwards, we switched to experiments with a sample
application running on top of several cloud storage offerings.

A. Simulation

A special storage adapter (see section III-D) just randomly
drops updates and returns arbitrary values. We used it in
a configuration where it created violations of MRC and
RYWC for about 50% of all requests to really strain our
library (commercial cloud storage offerings usually offer
lower rates of violations, e.g., [9]). Next, we implemented a

5aws.amzon.com/s3
6aws.amzon.com/dynamodb
7aws.amzon.com/simpledb



test application which just reads and writes random values
and checks each time for MRC and RYWC violations and
used it with this adapter.

During several billion simulated requests each, we never
encountered any consistency violations as long as our library
was used. When running the same setup without our library,
we could observe the expected number of inconsistencies.

B. Sample Application

As our sample application, we chose an internet forum as
this allows to easily check for inconsistencies. We believe,
though, that any other application would show the same or
comparable results. Our internet forum implementation had
ten conversation threads. During every test run clients would
randomly choose one, read it completely, add a response
and write it back as well as check for violations of MRC
or RYWC. Each benchmark was repeated several times and
used 30 clients which were deployed on 30 EC28 micro
instances in the region eu-west, ten per availability zone.
Each client executed 1,000 test runs, thus, totalling a number
of 30,000 reads and writes each per benchmark. We ran
benchmarks with and without our library for S3, DynamoDB
(consistent and eventually consistent reads) and SimpleDB
(also consistent and eventually consistent reads). Whenever
we incurred an availability error, the benchmark just repeated
the respective test run until it completed successfully. Each
test configuration (e.g., DynamoDB with library and consis-
tent reads) was repeated several times.

C. Results

As expected, all test runs using our library showed no
violations of MRC and RYWC. When not using the library,
i.e., accessing the data store directly, we could see huge
numbers of consistency violations. Figures 3 and 4 show
box plots of the number of consistency violations incurred
by our 30 clients (CR stands for consistent read, ER stands
for eventually consistent read). A value of 500 means
that out of 1,000 reads half were consistency violations.
Results for each test configuration were relatively stable
when rerunning our benchmarks, i.e., the standard deviation
values of repeated tests within one test configuration were
close to zero.

Apart from counting inconsistencies, we also measured
latencies for reads and writes to determine whether there is
any relevant latency overhead caused by our library. During
several S3 benchmarks, we did not see any deviations –
neither between different benchmarks nor depending on
using the library or not. Based on that, we believe it is
feasible to say that the latency overhead caused by our
library is negligible. In fact, values with library were often
a little less than without library.

In our DynamoDB and SimpleDB benchmarks we saw
extensive variability (between a few hundred and several

8aws.amazon.com/ec2

Figure 3. Violations of MRC without Library

Figure 4. Violations of RYWC without Library

thousand milliseconds) in the latency values as well as a
large number of availability issues – both for test runs with
and without library. This could either be due to general
problems of the service at the time of our test run or due to
creating too much load9. We could neither see arguments in
favor of or against a latency overhead of our library during
those tests as it was just not possible to identify a statistically
relevant result.

D. Discussion

When comparing our results to the benchmarking results
of Bermbach and Tai [9], it seems that the number of
violations of RYWC depends on the number of concurrent
updates as well as the update propagation speed of the
data store which typically implements a last write wins
strategy: If the update propagation is too slow, the value
will be overwritten by the next update. If there are only a
few concurrent updates, there is more time to propagate the
update. The number of MRC violations, in contrast, depends
more on the rate of updates than its origin plus the degree
of session stickiness offered by a system.

9In [17] Kossmann et al. discovered that several cloud storage systems,
including SimpleDB, scale very poorly. For S3, in contrast, they could not
find any scalability limitations.



Both the MRC and RYWC results for SimpleDB are
interesting in that matter as they hint that a consistent read
contains the newest value written which just might be a
concurrent update whereas the eventually consistent read is
likely to read the same replica which the client interacted
with before, i.e., a high degree of session stickiness. This
can also be seen in the MRC results for DynamoDB, though,
definitely less pronounced.

Our evaluation clearly shows that especially applications
with large numbers of concurrent updates benefit from using
our approach. Previous results [9] show that even when
this is not the case, consistency violations occur at least
from time to time and applications must be able to cope
with it. Often this will mean implementing some variant of
our approach at application level, e.g., by reloading data
whenever a violation is detected [18].

Based on our results, we believe it is a better idea to
handle such violations at the middleware level, i.e., in our
case by using our library, than at either application level or
within the storage system.

A downside of our approach is an overhead both in
terms of cost and time for persistence, network transfer and
comparison of the vector clocks. For our test application,
this overhead was negligible. It would be interesting to
see, though, how this changes for different applications
and workload – especially, when considering worst case
applications with very large numbers of app servers issuing
a very high write load and, thus, creating vector clocks with
many entries as well as many conflicting versions. A detailed
analysis of this is beyond the scope of this work.

V. RELATED WORK

Mahajan et al. [19] show that an always available sys-
tem (which is a necessary condition for cloud storage
systems) can give no stronger consistency guarantees than
CC. Brzezinski et al. [15], [20] investigate the relationship
between data-centric and client-centric consistency models
and show that data-centric CC can only be reached if all four
client-centric models (MRC, RYWC, MWC and WFRC)
are guaranteed. To our knowledge no previous approach
exists that directly addresses the client-side guarantees as all
previous approaches solely focus on data-centric guarantees
and offer client-centric consistency only as a by-product.

COPS [11] and MDCC [21] both offer stricter consistency
guarantees than eventual consistency. In COPS a client-side
library adds metadata comparable to our vector clocks but
in contrast to our approach this metadata is evaluated by
the storage system below. So, their approach guarantees
causal consistency but cannot run on top of arbitrary cloud
storage systems, instead it is a storage system itself. MDCC
also uses a client-side library but Generalized Paxos is used
to offer strong consistency guarantees on top of arbitrary
storage systems. This comes with a price, though: As the
libraries need to communicate, this directly affects latency

and under adverse conditions availability. Megastore [6] is
implemented on top of Google BigTable [1] to increase its
consistency guarantees via 2PC and Paxos. To our under-
standing, though, consistency is not addressed by the also
included client-side library but rather by a separate service
running either Paxos or 2PC.

Like Footloose [22], our library can be used to support
offline operations with local progress on cached files and
reconciliation upon reestablishment of connection, a con-
cept termed physical eventual consistency. The difference,
though, is that Footloose itself is a storage system and not
intended to be used with existing eventually consistent data
stores.

Krishnamurty et al. [23] propose an approach which
allows clients to specify consistency requirements for opera-
tions but focuses on staleness. Yu and Vahdat [13] introduced
the notion of a conit, a consistency unit, with the three
dimensions staleness, order error and numerical error. Their
middleware prototype allows clients to specify bounds on
each of the dimensions. While this is certainly helpful, it
is not clear how order error shall relate to client-centric
consistency gaurantees like MRC or RYWC.

Brantner et al.’s implementation of a database on top
of Amazon S3 [18] adds additional database features to
S3 which is more a blob store than a database. They
address consistency guarantees only as a sidenote and do
not use client-side caching. If MRC and RYWC are desired
additional metadata is used to identify violations and to
refetch data in that case. For MWC and WFRC they incur
the same problems as our approach.

Several approaches to consistency benchmarking [9], [10],
[24], [25] allow to quantify staleness or to count violations
of, e.g., MRC. This is certainly helpful in terms of infor-
mation but has no influence on the actual guarantees of a
datastore. The approach by Bailis et al. [26] allows to give
predictions for consistency guarantees of dynamo-style [3]
quorum systems for scenarios where no failures occur. This
again has no effect on the actual consistency guarantees of a
storage system but at least increases transparency regarding
QoS levels.

VI. CONCLUSION

Applications running on top of distributed storage systems
often have consistency requirements that cannot be fulfilled
by the underlying storage system. This is especially the case
for cloud storage and NoSQL systems.

In this work, we have presented an approach to increase
consistency guarantees by using a middleware component
running on the same server-side machines as the application
code. This middleware service uses vector clocks and client-
side caching to guarantee monotonic read consistency as
well as read your writes consistency. It also helps towards
reaching monotonic write consistency as well as write fol-
lows read consistency and reduces the chance of lost updates



due to last write wins strategies within the storage system.
In our evaluation, we have shown that (a) this is a real

world problem when using cloud storage systems, (b) that
our approach can give the respective guarantees and (c) that
the overhead for the considered scenario is negligible in
relation to the benefits of using it.

Future work should address efficient strategies for man-
aging optimal session lengths to further reduce the overhead
of our approach. Also, based on [27] different types of data
might have different consistency requirements. Combinining
our approach with consistency rationing could further reduce
the overhead and should widen the range of feasible use
cases.

Another interesting approach which we leave for future
work would be to add some kind of agreement protocol
to our library which asserts that different instances of our
library agree on a total order for conflicting vector clocks.
This would create the client-side illusion of Sequential
Consistency as long as no failures occur. In the presence of
failures, this extension could then decide to either block until
the failure has been resolved (and thus continue to guarantee
Sequential Consistency while sacrificing availability) or to
use the library in its present state as a fallback solution still
guaranteeing Causal Consistency while asserting continuous
availability of the system.
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