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Abstract. Due to the advent of eventually consistent storage systems,
consistency has become a focus of research. Still, a clear overview of con-
sistency in distributed systems is missing. In this work, we define and
describe consistency, show how different consistency models and perspec-
tives are related and briefly discuss how concrete consistency guarantees
of a distributed storage system can be measured.

Keywords: Consistency, Distributed Systems

1 Introduction

In distributed storage systems replication can be used to increase durability
and availability of data as well as to enable fault tolerance and low latencies
for distributed clients. This comes with a price, though, as multiple copies add
the burden of keeping replicas identical. With the advent of the Internet and
lately Cloud Computing, replication has become the number one mechanism to
deal with scalability issues, load variance and large numbers of parallel requests.
This in turn has brought consistency to the attention of both businesses and
researchers as there is now a multitude of storage systems each offering different
consistency guarantees which cannot be easily measured. As the CAP theo-
rem and the PACELC model[18, 1] mandate, there are direct trade-offs between
consistency and availability as well as consistency and request latency of a repli-
cated storage system and each system chooses a different spot on the continuum
of consistency guarantees between strict consistency and no consistency.

There is much work on consistency models, their implementations and mea-
surements, but the relationships between models and measurement approaches
is not always clear. Furthermore, researchers from the database community have
an entirely different understanding of consistency than researchers from the dis-
tributed systems community.

In this work, we try to shed some light on these issues. We start with a
brief description of what consistency means in both research communities before
taking the distributed systems view and analyzing different perspectives on con-
sistency as well as the relationship between various consistency models. Next, we
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combine this with our previous work on consistency benchmarking and describe
continuous metrics and setups for experimental consistency measurements.

The main contribution of this work is, hence:

– A comprehensive overview of consistency models and guarantees, including
discussions why particular guarantees are useful in different use cases.

– An analysis how consistency models can be ordered by their strictness and
how client-centric guarantees relate to data-centric models.

– A discussion of different metrics to describe consistency guarantees as well
as a brief analysis of existing benchmarking approaches.

2 Definitions

The term consistency is derived from the latin word consistere which means
“standing together” or also “stopping together”. Hence, consistency generally
describes relationships between items that are somehow connected. When con-
sidering consistency of data, a consistent state requires that all relationships
between data items and replicas are as they should be, i.e., that the data rep-
resentation is correct. This focus on the correctness can be seen in both the
database as well as the distributed systems community – but on different levels.

2.1 Database Systems

Researchers from the (relational) database community focus on consistency in
the context of ACID guarantees. A set of operations is abstracted into a transac-
tion that will execute entirely or not at all (atomicity). If it executes, its changes
will be permanently visible (durability). Multiple transactions may execute con-
currently but use suitable mechanisms to show the same behavior as if all trans-
actions were executed according to some global serializable order. This can be
done in various degrees of isolation1 ranging from true serializability (which is
rarely offered in actual products [5]) to read uncommitted. Transactions guaran-
tee that the database always adheres to a global schema (independent of whether
the database is replicated or not) where all integrity constraints, a set of condi-
tions and requirements, are observed [15] (consistency).

Hence, the consistency focus of database systems is on the relationships be-
tween data items and the overall correctness of the entire database. They can
be guaranteed in a distributed setting but it is expensive to do so as consistency
and isolation are typically guaranteed via locking mechanisms which create an
extensive communication overhead in a distributed setting. This is also caused
by the fact, that transactions were intended as “a simple programming abstrac-
tion to cope with concurrent executions, rather than to address the challenges
of a distributed setting.” [33].

1 Isolation describes the degree to which concurrent transactions are aware of each
other, e.g., by accessing the same data items.
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2.2 Distributed Systems

Researchers from the distributed systems community investigate state shared
by multiple replicas, i.e., several copies of a datum exist which may or may not
be identical. Executions of operations on these replicas may read or change the
state at one or more replicas. Essentially, “a consistency criterion [or consis-
tency model] defines which executions of a distributed system are considered
correct” [21], i.e. which order of operations leaves the data in a correct state.

In the following, we will focus on the distributed systems perspective on
consistency which can be defined as follows:

A system is in a consistent state, if all replicas are identical and the
ordering guarantees2 of the specific consistency model are not violated.

3 Perspectives and Consistency Models

3.1 Perspectives on Consistency

In a distributed storage system there are two perspectives on consistency [34]:
the provider (i.e., the entity responsible for the deployment and operation of
a storage system) views the internal state of the system. His focus is on the
synchronization processes among replicas and the ordering of operations. Hence,
this perspective is called data-centric. The other perspective is the one of a
client of the storage system. Here, a client refers to the process that interacts
with the storage system which can be any kind of application, middleware or
even software running on the end user’s machine or mobile device. This client-
centric perspective views the system from the outside as a black box. Hence,
its focus is on the guarantees of the distributed storage system that could also
be captured as part of a service level agreement (SLA). Based on these two
perspectives, there are various consistency models either taking a client-centric
or data-centric perspective. Still, there is a relation between those models so that
some models and combinations thereof mean exactly the same thing while still
bearing different names.

Both perspectives have advantages and disadvantages for the analysis of con-
sistency guarantees – depending on the issue of interest. While data-centric con-
sistency models do not address concrete implementations or algorithms, they
certainly describe ordering properties that allow to develop a corresponding syn-
chronization protocol. The downside is that data-centric consistency models are
not really helpful to application developers. Client-centric consistency models de-
scribe the effects of such a synchronization protocol. While this is very helpful to
an application developer, it ignores completely how this could be implemented,
i.e., what internal synchronization protocols might deliver such a guarantee.

2 Ordering guarantees in this context describe how requests may be reordered on
different replicas.
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3.2 Consistency Models and Implementations

Both data-centric and client-centric consistency guarantees have two dimensions:
ordering and staleness3. Staleness describes how much a given replica is lagging
behind, either expressed in terms of time (t-visibility) or versions (k-staleness)[4].
Again, k-staleness is a function of t-visibility and the update patterns of the ap-
plication so that, for application-independent information, t-visibility suffices to
characterize the staleness guarantees of a storage system. Low, bounded stale-
ness values can often be tolerated by applications as long as the corresponding
real-world events would have the same or higher staleness values without an IT
system. For example, when person A wires money to person B, the account of A
will be charged right away. Person B in contrast might not be credited for some
time. In the EU this time window is limited to three days which is far longer than
any replica synchronization protocol might take. Hence, small staleness values
will often not be noticed.

Ordering on the other hand is more critical. In a setting with strict consis-
tency, all requests must be executed on all replicas in their chronological order
which is hard to implement in distributed databases due to clock synchroniza-
tion issues as the replica servers might disagree on the actual chronological order
of events. The standard database mechanism of locking offers poor performance
levels in a distributed setting. Based on this, data-centric consistency models
exist that relax certain ordering requirements while keeping those that are es-
sential to applications. These models can be ordered by the “strictness” of their
guarantees. Client-centric consistency models take a different approach: While
there will almost certainly be cross effects between the models, the guarantees
itself are disjunct in their promises and complement each other. We will start
by describing client-centric consistency models before continuing to data-centric
models and how those two are related.

Client-centric Consistency The first model, Monotonic Read Consistency
(MRC), guarantees that a client that has read a version n will thereafter always
read versions ≥ n [34, 37]. This is helpful as from an application perspective
data visibility might not be instantaneous but versions at least become visible in
chronological order, i.e., the system never “goes backward” in time. For example,
imagine person B from our bank scenario above. If this person first sees the
credited amount on his bank account statement and then tries to transfer the
money to a person C which fails due to “insufficient funds”, this will at least
cause severe customer irritation if not more.

Read Your Writes Consistency (RYWC) guarantees that a client that has
written a version n will thereafter always be able to read a version that is at
least as new as n, i.e., ≥ n [34, 37]. This helps, for example, to avoid user ir-
ritation when person A checks his bank account statement, does not see the

3 Yu and Vahdat[39] propose an additional dimension numerical error to describe
replica differences based on the semantics of the respective data item. From our
point of view, this is first not always applicable and second a numerical error is
essentially a function of ordering, staleness and application access patterns.



Consistency in Distributed Storage Systems 5

transaction and consequently wires the same amount of money again. Generally,
RYWC avoids situations where a user or application issues the same request sev-
eral times because it gets the impression that the request failed the first time.
For idempotent operations reissuing requests causes only additional load on the
system, while reissuing other requests will create severe inconsistencies.

Monotonic Writes Consistency (MWC) guarantees that two updates by the
same client will be serialized in the order that they arrive at the storage sys-
tem [34, 37]. This is useful to avoid seemingly lost updates when an application
first writes and then updates a datum but the update is executed before the ini-
tial write and is, thus, overwritten. In the bank scenario above, person A might
have corrected the account number of person B before finalizing the transfer. If
MWC is not guaranteed, the money might end up in the wrong account.

Write Follows Read Consistency (WFRC) guarantees that an update follow-
ing a read of version n will only execute on replicas that are at least of version
n [34]. This, also, helps against seemingly lost updates where the update is over-
written by a delayed update request for versions ≤ n. This model essentially
extends MWC guarantees to updates by other clients that have at least been
seen.

In NoSQL and Cloud storage systems, these client-centric properties are typ-
ically not guaranteed explicitly. Benchmarks can be used to determine the prob-
ability of violations or to measure the second dimension staleness [8, 38].

Data-centric Consistency In this section, we will present data-centric consis-
tency models ordered by the strictness of their guarantees and discuss for each
model how it can be translated into a client-centric consistency model. As al-
ready discussed, there are two consistency dimensions: staleness and ordering.
The following consistency models (apart from Linearizability) do not consider
staleness [34]. In fact, increasing strictness of ordering guarantees often leads to
higher staleness values as updates may not be applied directly but are required
to fulfill dependencies first (e.g.,[3]).

The lowest possible ordering guarantee is typically described as Weak Con-
sistency [34, 37]. As the name states, guarantees are very weak in that they do
not really exist. Essentially, weak consistency translates to a colloquial “repli-
cas might by chance become consistent”. While an implementation may or may
not have a protocol to synchronize replicas, a typical usecase can be found in
the context of a browser cache: it is updated from time to time but replicas will
rarely (if ever) be consistent. As Weak Consistency does not provide any ordering
guarantees at all, there is no relation to client-centric consistency models.

Eventual Consistency (EC) is a little stricter. It requires convergence of repli-
cas, i.e., in the absence of updates and failures the system converges towards a
consistent state. Updates may be reordered in any way possible and a consistent
state is simply defined as all replicas being identical [34, 37]. EC is very vague in
terms of concrete guarantees but is very popular for web-based services. Most
NoSQL systems implement EC [16, 11, 26, 17].
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In terms of client-centric consistency guarantees, EC often fulfills these guar-
antees for a majority of requests but does not guarantee to do so. As an example,
Amazon S34 currently delivers MRC for about 95% of all requests whereas it
still violated MRC in about 12% of all requests in 2011 [8].

While there are certainly some usecases where EC cannot be applied, it often
suffices as the real world itself is inherently eventually consistent. The difference
is, that more conflict resolution is necessary at the application layer [16] requiring
a higher skill set from application developers. Instead of pessimistically locking
data items “guesses and apologies” are used [22].

Causal Consistency (CC) is the strictest level of consistency that can be
achieved in an always available storage system [30] based on the tradeoffs of the
CAP theorem [18]. In a causally consistent storage system, all requests that have
a causal relationship to another request must be serialized (i.e., executed) in the
same order on all replicas while unrelated requests may be serialized in arbitrary
order. A request r2 causally depends on a request r1

– if both requests are issued by the same client and r1 was received at the
storage system before r2,

– if r2 is a read that returns the result of r1 which is an update or
– if there is a transitive relation between both requests [34, 37, 9].

Of course, CC captures potential causality so that systems like COPS [29] have
to evaluate large dependency trees before applying an update. This both adds an
overhead and increases staleness as updates cannot become visible right away.
Bailis et al. [3] propose to minimize this impact by having the application explic-
itly define dependencies that need to be considered. A typical implementation
uses vector clocks to identify (potential) causal dependencies.

CC can also be defined via the client-centric guarantees discussed above: If
all four are fulfilled, the system is causally consistent [9]. It is also possible to
create the client-side illusion of CC with the combination of version caching and
vector clocks [7].

As Guerraoui and Hari point out, CC does not require replica convergence [21].
Convergence is only asserted when the latest update is causally dependent on
all previous writes since the last idempotent replace-update5 and staleness is
bounded.

Sequential Consistency (SC) is a very strict consistency model and cannot be
achieved in always available systems6. It requires that all requests are serialized
in the same order on all replicas and that requests by the same client are executed
in the order that they are received by the storage system [34]. While this model

4 aws.amazon.com/s3
5 i.e., some request like x := 5 which does not depend on any previous value.
6 In CC only requests with causal dependencies must be executed in the same order

on all replicas. For SC, this extends to all requests so that replicas need to agree
on the ordering of requests for non-causally related requests. This is not possible in
the presence of failures so that the system either becomes unavailable or violates its
consistency model.
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does not guarantee anything about the recentness of values read by clients, it
mandates that all updates become visible to clients in the same order. Often,
SC is described as strict consistency which is not entirely true as staleness is not
addressed. But since real-world staleness values are often very small SC usually
suffices even for applications seemingly requiring strict consistency.

SC could, for example, be implemented using the Paxos algorithm [27]. Gen-
erally, vector clocks that define causal relationships can be in conflict (e.g., for
unrelated concurrent updates). If vector clocks are used for request ordering and
an approach exists that defines a transitive, global order for all conflicting vector
clocks, then a causally consistent system becomes sequentially consistent.

When focusing on client-centric consistency guarantees, the main difference
between CC and SC is that WFRC becomes global in so far as reads by all
clients are considered. This means that as soon as a client has seen a particular
version n, all updates by other clients will only be executed on replicas that have
already processed the update to version n. This guarantee can be provided as
SC guarantees that all replicas execute all updates in the same order. So, once a
version n has been read, it is guaranteed to have been finally serialized as that
version so that any updates will be serialized with a higher version number.

Linearizability (LIN) describes what is typically meant with strict consis-
tency. It does not only consider ordering but also staleness, i.e., it requires that
all requests are ordered chronologically by their arrival time in the system and
that all requests always see the effects of the preceding request. This can be
visualized as all operations happening instantaneously at a single point in time
and not during an interval of time [23].

LIN is hard to implement in distributed systems as there is always the is-
sue of clock synchronization (which is necessary to determine a chronological
order of requests). In practice, however, sufficiently high precision is achieved to
guarantee that violations are highly improbable to occur. Furthermore, in case of
violations LIN becomes SC between which applications will rarely notice a differ-
ence. While Consensus protocols can guarantee that all replicas serialize requests
in the same order, they cannot guarantee that all replicas execute requests in
the actual chronological order of arrival in the system. An implementation using
distributed locking is likely to show poor performance.

Expressed in terms of client-centric consistency guarantees, the difference
between SC and LIN is that both RYWC and MWC become global guarantees.
This means that a client will always see all updates and that all writes will be
executed in the (global) chronological order. MRC then also becomes global as
a side effect.

Beyond the data-centric consistency models discussed here, there are a few
other models (e.g., PRAM consistency [10]) which we leave out as no implemen-
tations exist and space within this paper is limited. Table 1 gives an overview
of the relationship between different client-centric and data-centric consistency
models. Entries “N/A” mean that the guarantee may be reached for single re-
quests from time to time but only based on chance. In contrast, “Often” spec-
ifies that such a guarantee is fulfilled for a large number of requests. “Single
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Client” describes that the guarantees from section 3.2 are fulfilled, whereas we
use “Global” to describe when such a guarantee is extended to all clients at the
same time.

Data-centric Model MRC RYWC MWC WFRC

Weak Consistency N/A N/A N/A N/A
Eventual Consistency Often Often Often Often
Causal Consistency Single Client Single Client Single Client Single Client
Sequential Consistency Single Client Single Client Single Client Global
Linearizability Global Global Global Global

Table 1. Relationship Between Data-centric and Client-centric Consistency Models
Ordered by the Strictness of their Guarantees

Other Consistency Models Beyond the models already discussed, there are
also a few other consistency models that do not quite fit the categorization used
so far.

Multi-dimensional Consistency: Yu and Vahdat [39] introduce the concept of
a conit, a consistency unit, which is a three dimensional vector that describes
tolerable deviations from LIN along the dimensions staleness, order error and nu-
merical error. As already mentioned, numerical error is often not applicable and
semantically overlaps with staleness and order error. When ignoring numerical
error, their work becomes comparable to the work of Torres-Rojas et al.(e.g., [36,
35]) who coined the term timed consistency. Timed consistency models are also
sometimes known as delta consistency and essentially describe a combination of
ordering and staleness in that the inconsistency window (defined by the time
period between the commit of an update and reaching a consistent state) is
bound. This means that the guarantees of a particular consistency model are
not reached right away but rather after a fixed period of time ∆t. If replicas fail
to synchronize during that period of time, the item becomes unavailable until
consistency has been reached. This is particular useful for guaranteeing Ser-
vice Level Agreements (SLAs) and increases the transparency of the consistency
availability trade-off.

Sadly, to our knowledge no implementations of timed consistency models
exist apart from TACT [39] and the work of Krishnamurthy et al. [25] who
guarantee bounds on k-staleness (based on version count). It is possible, though,
to specify a timed version for each of the data-centric consistency models where
the guarantees become visible before the specified time window is over. In that
case, the models discussed above become a special case of their timed equivalent
(i.e., with a time window of infinity) which also affects the timeliness of client-
centric guarantees.
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Coherence: In their original definition, data-centric consistency models provide
ordering guarantees for all data items, i.e., in CC, for example, two updates
by the same client on two different data items must be serialized in correct
order. This also implies that an eventually consistent datastore can only be in a
consistent state if all replicas of all data items are identical. Depending on the
size of the datastore deployment this may never be the case and it is also more
difficult to coordinate updates on large numbers of servers than for just a few.
So, for reasons of scalability it often makes sense to provide the guarantees of
the consistency model only per key. In the case of our example above, those two
updates could then be executed in arbitrary order, thus, granting more flexibility
to the storage system. Guarantees per key often suffice as it is then up to the
application developer to persist all items, which need guarantees amongst each
other, under the same key.

Those models are named coherence, i.e., eventual coherence, causal coher-
ence, sequential coherence. It is common practice, though, to use consistency for
both coherence and consistency models alike. To add some clarity, we propose to
add a “per key” prefix if coherence is meant, i.e., per key CC instead of causal
coherence.

Ramakrishnan [33] argues that the “unit of consistency” should also be con-
sidered as a continuum where guarantees are not only provided either for the
entire data set or for just one key but also for groups of keys like, e.g., the entity
groups in Google’s Megastore [6].

Adaptable Consistency: Kraska et al. [24] propose Consistency Rationing where
data items are in a first step clustered based on importance (e.g., for a web shop
credit card numbers vs. comments on reviews) into types A, B and C. While
types A and C are always handled at LIN or EC respectively, B data continu-
ously changes its consistency requirements based on an external cost function.
This means that B data is handled at LIN whenever the costs of inconsisten-
cies exceed the cost of opportunity caused by unavailability or high latencies.
Consistency Rationing could, for example, be implemented via the much older
GARF library [20].

Chihoub et al. [12, 13] present approaches that allow the user to specify max-
imum stale read rates or a consistency cost efficiency level as part of SLAs. The
system then dynamically uses different consistency levels in Apache Cassan-
dra [26] while guaranteeing the SLAs.

Li et al. [28] propose the concept of RedBlue Consistency where operations
are broken down into very small commutative suboperations that are then cat-
egorized as either red or blue meaning that they are either synchronously or
asynchronously replicated while guaranteeing dependencies between subopera-
tions. While Consistency Rationing uses different consistency levels based on the
data type, RedBlue Consistency adaptively tunes the consistency level based on
the kind of operation.
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4 Measuring Consistency Guarantees

4.1 Continuous Consistency Metrics

According to thefreedictionary.com, a metric is “A standard of measurement”.
When measuring a certain aspect, a measurement always comprises a value and
a corresponding unit (e.g., for the height of a building this could be the value
“5” and the unit “meter”). If it is not possible to find two values which do not
have any value in between them, the metric is continuous. Otherwise the metric
is discrete. An example for a continuous metric would be the height of a person,
whereas clothing sizes are an example for a discrete metric.

When the ultimate goal is to compare consistency guarantees of two storage
systems, it is desirable to either use a continuous metric or at least use a discrete
metric with a large number of potential measurement values. Otherwise, it might
not be possible to rank systems according to their consistency guarantees. In the
following, we will discuss metrics for data-centric and client-centric consistency.
Depending on the perspective (storage system provider or application developer),
different metrics may be the best fit.

Data-centric Consistency Metrics Zellag and Kemme [40] extend their pre-
vious work on transactional datastores to non-transactional datastores. They
propose to build a global dependency graph based on operation logs and count
cycles in the graph as a metric for “consistency anomalies”. This is a discrete
metric and one of their main assumptions is that the storage system guarantees
at least CC which is very restrictive and does not allow to analyze consistency
guarantees of most NoSQL systems which only offer EC. Table 2 lists their ap-
proach as “Anomalies”.

Rahman et al. [32], Golab et al. [19] and Anderson et al. [2] at Hewlett
Packard Labs also propose to build dependency graphs based on operation logs
and to count cycles in the graph as a metric for consistency guarantees. They
distinguish the three properties safeness, regularity and atomicity for which they
each count violations. A storage system that has no cycles in its atomicity graph
fulfills LIN. The other two properties also consider staleness as well as ordering.
Regularity is, thus, stricter than SC whereas Safety cannot be compared to
existing consistency models. Regularity mandates that “a read not concurrent
with any writes returns the value of the most recent write, and a read concurrent
with some writes returns either the value of the most recent write, or the value of
one of the concurrent writes” [2]. Safeness in contrast relaxes the last requirement
so that reads concurrent with writes may return arbitrary values. We do not
believe that the latter guarantee is very helpful as it basically requires LIN for
non-concurrent requests and Weak Consistency for concurrent requests. Chockler
et al. [14] seem to share that opinion. Furthermore, real-world systems may or
may not return the value of the most recent write but, to our knowledge, no
system exists that may return values that have never been written. All three
metrics can also be expressed as k-property or ∆-property (e.g., k-atomicity and
∆-atomicity) which describes the maximum number of time units or versions a
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particular system has been found to lag behind during a violation. This is a rather
coarse-grained discrete metric. Table 2 lists their approach as “k-Atomicity”,
“∆’-Atomicity” etc.

We propose to again distinguish the two consistency dimensions ordering and
staleness and measure them separately. Staleness can be expressed either based
on time (t-Visibility) or operation count (k-Staleness) [4]. We believe that these
two (continuous) metrics are best suitable to describe data-centric staleness. It
probably makes sense to aggregate them into a distribution function, i.e., a func-
tion describing the probability of a particular staleness “level”. Staleness can be
measured independent of concrete application workloads. For ordering on the
other hand, it makes sense to mine the replicas’ operation logs to determine the
number of violations for each of the consistency models; i.e., in a SC system vio-
lations of LIN will be counted, in a CC system violations of SC will be measured
and in an EC system violations of CC could be counted. This, obviously, highly
depends on the distribution of requests regarding time, target key, originator
and kind (read, insert, update, delete). Hence, for a comparison of two systems’
consistency guarantees it is a hard requirement to replay exactly the same client
workload which will often be problematic7. Ordering can then be reported as
number of violations of consistency model X per unit of time. Table 2 gives an
overview of data-centric consistency metrics.

Metric Staleness Ordering Continuous Discrete Unit & Description

Anomalies X X - X Number of cycles
k-Atomicity X X - X Max. version lag in violation
∆-Atomicity X X - X Max. time lag in violation
k-Regularity X X - X Max. version lag in violation
∆-Regularity X X - X Max. time lag in violation
k-Safeness X X - X Max. version lag in violation
∆-Safeness X X - X Max. time lag in violation
t-Visibility X - X - Prob. distr. of time lag
k-Staleness X - X - Prob. distr. of version lag
Violations - X X - No. of violations per time unit

Table 2. Overview of Data-centric Consistency Metrics

Client-centric Consistency Metrics Wada et al. [38] as well as Bermbach
and Tai [8] propose to take a client-centric perspective for measuring consistency.
This is of particular interest for application developers who can this way get con-
crete information to act upon. For client-centric consistency, there are again the
two consistency dimensions ordering and staleness which both papers consider.
Patil et al. [31] also propose to measure client-centric staleness in terms of time.

7 This is a common problem for consistency metrics: Ordering cannot be considered
properly without analysis of the request workload.
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Staleness is best expressed either in terms of time (t-Visibility) or version
lag (k-Staleness) in both cases the corresponding data-centric value is an upper
bound for the client-centric one, as a system may employ additional mecha-
nisms to hide staleness from the application. For example, in a quorum system
with an (N,R,W) configuration of (5,2,2) data-centric t-Visibility will be deter-
mined by the time difference between the start of the update in replica 1 (or
the commit timestamp – this depends on when updates become visible: right
away or upon commit) and the end of the update in replica 5. The client-centric
t-Visibility, in contrast, is determined again by the same start timestamp but
ends when replica 4 completes the write as afterwards no request will ever again
return the old value. Hence, data-centric staleness values are an upper bound
for client-centric staleness values. Staleness can either be expressed as a density
function (probability distribution of inconsistency window sizes) or as a cumu-
lative density function (probability of reading fresh data ∆t time units after the
last update).

Ordering is best expressed in terms of the client-centric consistency models,
i.e., the likelihood of a request violating a particular guarantee. Table 3 gives an
overview of client-centric consistency metrics.

Metric Staleness Ordering Continuous Discrete Unit & Description

MRC Violations - X X - Prob. distr. of violation
MWC Violations - X X - Prob. distr. of violation
RYWC Violations - X X - Prob. distr. of violation
WFRC Violations - X X - Prob. distr. of violation
t-Visibility X - X - Prob. distr. of time lag
k-Staleness X - X - Prob. distr. of version lag

Table 3. Overview of Client-centric Consistency Metrics

4.2 Consistency Benchmarking Approaches

After identifying the metrics most useful for measuring consistency in the last
section, we will now describe benchmarking approaches for these metrics.

Data-centric Consistency All data-centric metrics require access to the actual
replicas of the storage system. A test application creates load on the system.
Results are then achieved by mining replica logs which should for each request
contain the following information: start and end timestamp at each replica, some
unique request id and the request type (read, write). Based on this, it is then
possible to calculate t-Visibility, k-Staleness as well as the number of ordering
violations and the corresponding consistency model8.

8 Some additional information like the (N,R,W) configuration for a quorum system
may be necessary.
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Client-centric Staleness and MRC Violations Both t-Visibility as well as k-
Staleness can be benchmarked via the approach of [38] and its extension by [8]:
Several geographically distributed machines interact with a storage system. A
single writer periodically writes a timestamp and a version number to the storage
system. The remaining machines continuously read the same data item from the
storage system. Based on this the distribution of staleness (both based on time
and version lag) can be calculated. The probability of MRC violations can be
calculated by analyzing the results of each individual reader machine.

MWC Violations A single machine inserts a value into the storage system and
directly updates it afterwards. After waiting for a sufficiently long period (all
replicas need to synchronize) the key is read again and the result is compared to
the updated value. If this is repeated for a large number of keys, the probability
distribution for violations of MWC can be calculated.

RYWC Violations A single machine writes a value into the storage system and
directly starts to continuously read it afterwards and logs the time difference to
the end of the update as well as whether it was possible to read the new value
or not. If this is repeated a statistically significant number of times, then it is
possible to calculate the probability distributions for violations of RYWC as a
function of the duration since the last update.

WFRC Violations So far, no benchmarking approach exists for WFRC viola-
tions. This can be explained by the fact that a violation cannot be directly ob-
served by a client. One approach could be to use the replica logs of the storage
system to identify if and how often WFRC has been violated.

Another approach could rely on the fact that WFRC violations mainly cause
the effect that a delayed update message of an older version replaces the update
that was executed on an older replica. If, for example, a client reads version n+10
and then issues an update which executes on a replica still at version n, then
(depending on the storage system’s implementation) either a delayed update
message for version n+ 10 may replace the client’s update (which leads to a lost
update) or a conflicting version will be created which needs to be reconciled at a
later point in time. If neither effect becomes visible, it still does not imply that
WFRC is always guaranteed.

Finally, a third approach might work for storage systems which offer update
operations beyond a CRUD interface. For example, a record append operation
like in the Google File System [17] could be used followed by an analysis of the
update order within the file.

5 Conclusion

In this work, we have provided an comprehensive overview of consistency in dis-
tributed systems. We started with a brief comparison of consistency in databases
and distributed systems before focusing on the two perspectives on consistency
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in distributed systems. Next, we continued with a detailed discussion of data-
centric and client-centric consistency models, their usecases and the relationships
between those models before describing metrics and benchmarking approaches
that help to determine consistency guarantees of distributed storage systems.
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