
Towards Comprehensive Measurement of
Consistency Guarantees for Cloud-Hosted Data

Storage Services

David Bermbach1, Liang Zhao2, and Sherif Sakr2

1 Karlsruhe Institute of Technology
Karlsruhe, Germany

david.bermbach@kit.edu
2 NICTA and University of New South Wales

Sydney, Australia
firstname.lastname@nicta.com.au

Abstract. The CAP theorem and the PACELC model have described
the existence of direct trade-offs between consistency and availability
as well as consistency and latency in distributed systems. Cloud stor-
age services and NoSQL systems, both optimized for the web with high
availability and low latency requirements, hence, typically opt to relax
consistency guarantees. In particular, these systems usually offer even-
tual consistency which guarantees that all replicas will, in the absence
of failures and further updates, eventually converge towards a consistent
state where all replicas are identical. This, obviously, is a very imprecise
description of actual guarantees.
Motivated by the popularity of eventually consistent storage systems,
we take the position that a standard consistency benchmark is of great
practical value. This paper is intended as a call for action; its goal is to
motivate further research on building a standard comprehensive bench-
mark for quantifying the consistency guarantees of eventually consistent
storage systems. We discuss the main challenges and requirements of
such a benchmark, and present first steps towards a comprehensive con-
sistency benchmark for cloud-hosted data storage systems. We evaluate
our approach using experiments on both Cassandra and MongoDB.

1 Introduction

Recently, we have been witnessing an increasing adoption of cloud computing
technologies in the IT industry. This new trend has created new needs for design-
ing cloud-specific benchmarks that provide the ability to conduct comprehensive
and powerful assessments for the performance characteristics of cloud-based sys-
tems and technologies [8, 15]. These benchmarks need to play an effective role
in empowering cloud users to make better decisions regarding the selection of
adequate systems and technologies that suit their application’s requirements.
In general, designing a good benchmark is a challenging task due to the many
aspects that should be considered and which can influence the adoption and the



2

usage scenarios of the benchmark. In particular, a benchmark is considered to be
good if it can provide true and meaningful results for all of its stakeholders [17].

Over the past decade, rapidly growing Internet-based services such as e-mail,
blogging, social networking, search and e-commerce have substantially redefined
the way consumers communicate, access contents, share information and pur-
chase products. Relational database management systems (RDBMS) have been
considered as the one-size-fits-all solution for data persistence and retrieval for
decades. However, the ever increasing need for scalability and new application
requirements have created new challenges for traditional RDBMS. Recently, a
new generation of low-cost, high-performance database systems, aptly named as
NoSQL (Not Only SQL), has emerged to challenge the dominance of RDBMS.
The main features of these systems include: ability to scale horizontally while
guaranteeing low latency and high availability, flexible schemas and data models,
and simple low-level query interfaces instead of rich query languages [22].

In general, the CAP theorem [10] and the PACELC model [1] describe the
existence of direct tradeoffs between consistency and availability as well as con-
sistency and latency. These trade-offs are a continuum, so that, due to the pop-
ularity of NoSQL systems, there is now a plethora of storage systems covering a
broad range of consistency guaranteess. In practice, most cloud storage services
and NoSQL systems (e.g., Amazon SimpleDB3, Amazon Dynamo [14], Google
BigTable [11], Cassandra [19], HBase4) opt for low latency and high availability
and, hence, apply a relaxed consistency policy called eventual consistency [25]
which guarantees that all replicas will, in the absence of failures and further
updates, eventually converge towards a consistent state where all replicas are
identical. For situations without failures, the maximum size of the inconsistency
window can be bounded based on factors such as communication delays, the load
on the system, and the number of replicas involved in the replication scheme,
e.g., see [3]. In practice, the implementation and the performance of the even-
tually consistent mechanism could vary between systems depending on several
factors such as the data replication and synchronization protocols, the system
load etc. For example, the results of [5] cannot be entirely explained by the
aforementioned influence factors.

Motivated by the increasing popularity of eventually consistent cloud-hosted
data storage systems, we take the position that a standard consistency mea-
surement benchmark for cloud-hosted data storage system is of great practical
value. For example, in cloud environments, users often want to monitor the per-
formance of their services in order to ensure that they meet their Service Level
Agreements (SLAs). Therefore, if consistency guarantees are specified as part of
the SLA of a cloud-hosted data storage service and the severity of SLA violations
can be detected and quantified in an agreeable way, then users could at least
receive some monetary compensation.

Furthermore, we believe that a comprehensive consistency benchmark is nec-
essary to evaluate the emerging flow of eventually consistent storage systems.

3 http://aws.amazon.com/simpledb/
4 http://hbase.apache.org/



3

Such a consistency benchmark should be able to provide a clear picture of the
relationship between the performance of the system under consideration, the
benchmarking workloads, the pattern of failures and the different consistency
metrics that can be measured from both of the system perspective and the client
perspective. This paper is intended as a call for action; its goal is to motivate
further research on building a standard benchmark for quantifying consistency
guarantees and behavior of cloud-hosted data storage systems. In this paper, we
do not present a comprehensive benchmark that would address all the challenges
such a benchmark would need to consider. We do, however, define the main re-
quirements for designing and building this benchmark and present the first steps
towards a comprehensive consistency benchmark. In particular, we summarize
the main contributions of this paper as follows:

– The identification of the challenges that a comprehensive consistency bench-
mark should consider.

– An analysis of state-of-the-art consistency benchmarking of NoSQL systems.
– The extension of an existing benchmarking approach towards meeting the

defined consistency measurement challenges.
– An experimental evaluation of two popular NoSQL systems, Cassandra [19]

and MongoDB5.
The reminder of this paper is organized as follows. We start with some back-
ground on consistency perspectives as well as consistency metrics and identify
challenges of a comprehensive consistency benchmark in section 2. Next, in sec-
tion 3 we describe the extensible architecture of a consistency benchmarking
system and its implementation. Afterwards, we use our proposed system for
evaluating and analyzing the effects of geo-replication under different workloads
on the performance of consistency guarantees for Cassandra and MongoDB in
section 4. Section 5 summarizes the related work before we conclude the paper
in Section 6.

2 Consistency Measurement: Perspectives, Metrics and
Challenges

2.1 Consistency Perspectives

There are two main perspectives on consistency measurement: the perspective
of the provider of a storage system and the perspective of a client of such a
system. The provider perspective focuses on the internal synchronization pro-
cesses and the communication between replicas and is, hence, called data-centric
consistency. In contrast, the client perspective focuses on the consistency guaran-
tees that a client will be able to observe. This perspective is called client-centric
consistency [24]. Depending on the perspective, different aspects need to be mea-
sured. Figure 1 shows a schematic overview of both consistency perspectives.

For both perspectives, there are two dimensions: staleness and ordering. Stal-
eness describes how much a replica (or a datum returned to the client) lags be-
hind in comparison to the newest version. It can be expressed both in terms of

5 mongodb.org



4

Fig. 1: Data-centric and Client-centric Consistency Perspectives

time or versions and most real world applications can tolerate small staleness
values. Data-centric staleness is an upper bound for client-centric staleness [5].

Ordering on the other hand is more critical. It describes how updates are
executed on replicas for data-centric consistency and what kind of operation
ordering becomes visible to clients for client-centric consistency models. Typical
data-centric models like Sequential Consistency or Causal Consistency [24] do
not consider staleness and can be ordered by their strictness. Typical client-
centric ordering models like monotonic reads or read your writes are disjunct in
their guarantees [6, 24].

2.2 Metrics

From the data-centric consistency perspective, consistency metrics (e.g., stale-
ness or violations of certain ordering models) can be easily determined by ana-
lyzing detailed logs created by the different replicas. It is therefore not possible
to quantify data-centric consistency for hosted cloud storage services (e.g., Ama-
zon S3) as access to the machines running the actual replicas is required. On the
other hand, analyzing those logs after running a standard database benchmark
is relatively straightforward. Based on previous work [3, 5, 6], we propose to use
fine-grained client-centric metrics. These are useful to an application developer
as they provide direct insight into the guarantees an application will encounter
and can be measured with any kind of storage system which is treated as a black
box. This is also a common practice for measuring the performance benchmarks
of database6 and NoSQL systems [12,20]. Furthermore, using such an approach
does not preclude the usage of replica logs (if available) to also determine data-
centric consistency guarantees.

In principle, we suggest that a comprehensive consistency benchmark should
include the following staleness metrics:

– Time-Based Staleness (t-visibility): This metric describes how stale a read
is in terms of time. The inconsistency window can be calculated as the time

6 tpc.org



5

window in between the latest possible read of version n and the start of the
write of version n+1 . Several measurements can be aggregated into a density
function describing the distribution of inconsistency windows. If a sufficient
number of reads was executed during the inconsistency window, it is also
possible to report a cumulative density function describing the likelihood of
fresh and stale reads as a function of the duration since the last update.

– Operation Count-Based Staleness (k-staleness): This metric is based on the
number of intervening writes and measures the degree of staleness. It obvi-
ously depends on the write load on the system and can, thus, be expressed
as a function of the write load combined with t-visibility.
Regarding the ordering dimension, the following four client-centric consis-

tency models have been proposed, e.g., see [24,25]:
– Monotonic Read Consistency (MRC): After reading a version n, a client will

never again read an older version.
– Monotonic Write Consistency (MWC): Two writes by the same client will

(eventually but always) be serialized in chronological order.
– Read Your Writes Consistency (RYWC): After writing a version n, the same

client will never again read an older version.
– Write Follows Read Consistency (WFRC): After reading a version n, an

update by the same client will only execute on replicas that are at least as
new as version n.
For these four models, we propose to use the likelihood of a violation as

metrics. WFRC is usually not directly visible to a client and is therefore hard
to determine without access to the replica servers’ logs. A standard benchmark,
hence, need only include measurements of MRC, RYWC and MWC.

2.3 Measurement Challenges

Accuracy and Meaningfulness of Measurements In general, fine-grained
metrics are better for controlling the quality of a system than coarse-grained met-
rics as they allow the definition of more expressive tradeoff decisions between
conflicting design decisions. In practice, an accurate measurement for consis-
tency metrics is a challenging process. For example, the accuracy of client-centric
t-visibility measurements is directly influenced by the precision of the clock syn-
chronization protocol. There are several synchronization protocols that work for
different scenarios. For example, NTP7 which is frequently used in distributed
systems offers about single digit millisecond accuracy

In addition, apart from workloads which may run in parallel to the benchmark
and, thus, use different system resources up to saturation levels, there is also the
workload (or rather the interaction pattern between benchmarking clients and
datastore) of the benchmark itself. Our experience has shown that observed
consistency ordering guarantees are highly volatile in regards to small changes
in this workload pattern (e.g., see [7]). Also, there is much interdependency
between the actual storage system, the load balancer used and the application

7 ntp.org



6

implementation. All in all, this leads to a situation where it is very hard to
precisely reproduce a concrete workload on one storage system, not to mention
on more than one, in a comparable way.

In large numbers of experiments, we have seen that more simplistic workloads
are easier to reproduce and, thus, allow a fairer comparison of systems. At the
same time, such a workload is not necessarily representative of an actual appli-
cation. Storage systems with at least causally consistent guarantees will assert
those guarantees independent of the actual workload. For eventually consistent
systems, though, some systems might (depending on the load balancer strategy
as well as the actual workload) behave like a strictly consistent database in one
scenario and become completely inconsistent in another. To us, the best strategy
for measuring the ordering dimension is still an unsolved challenge. We believe,
though, that reproducible and comparable results are paramount to benchmark-
ing whereas application-specific measurements belong in the area of consistency
monitoring. Hence, we tend to favor more simplistic workloads.

Staleness, on the other hand, can be measured independent of benchmarking
workloads. Finally, measurement results should be meaningful to application
developers in that measured values have a direct impact on application design.

Workloads Modern web-based application are often periodically demanding
(e.g. on specific day, month or time of the year) or create bursty workloads that
may grow very rapidly before shrinking back to previous normal levels [9]. Ideally,
a cloud-hosted data storage service should be infinitely scalable and instanta-
neously elastic and, thus, be able to handle such a load variance. In particular, a
perfectly elastic cloud-hosted storage system should scale up or out its resources
indefinitely with increasing workload, and this should happen instantly as the
workload increases with no degradation on the application performance.

However, reality is not perfect: In practice, systems use different mechanisms
to scale horizontally. For example, when new nodes are added to the cluster,
Cassandra moves data stored on the old nodes to the new nodes that have just
been bootstrapped. HBase, in contrast, acts as a cache for the data stored in the
underlying distributed file system and pulls data only on cache misses. Clearly,
reducing the amount of the data that needs to be moved during the bootstrap-
ping process asserts that the system will reach its stable state faster with less
congestion on system resources. In other scenarios, live migration techniques
are used in a multi-tenancy environment to migrate the tenant with excessive
workload to less loaded server in order to cope with increasing workload.

These different implementations for the different systems could affect the
consistency guarantees in different ways during the scaling process and should,
hence, be considered within a comprehensive assessment of a storage system’s
consistency guarantees. Previous studies did not consider different workloads
(e.g., sinusoidal workloads, exponentially bursty workloads, linearly increasing
workload, random workload) and how the system’s process of coping with it
affects consistency guarantees.



7

Geo-replication In general, Cloud computing is a model for building scalable
and highly available low latency services on top of an elastic pool of configurable
virtualized resources such as virtual machines, storage services and virtualized
networks. These resources can be located in multiple data centers that are geo-
graphically located in different places around the world which provides the abil-
ity to build an affordable geo-scalable cloud-hosted data storage service that can
cope with volatile workloads. In practice, most of the commercial cloud storage
services such as Amazon S3 or SimpleDB do not use wide area replication (only
within a region). However, other systems such as PNUTS [23], Megastore [4]
and Spanner [13] have been specifically designed for geo-replicated deployments.
Using compute services, it is easily possible to deploy geo-replicated NoSQL
systems of any kind.

Zhao et al. [28,29] have conducted an experimental evaluation of the perfor-
mance characteristics of asynchronous database replication of database servers
which are hosted in virtual machines using wide area replication. The results of
the study show that an increased application workload directly affects the up-
date propagation time. However, as the number of database replicas increases,
the replication delay decreases. Obviously, the replication delay is more affected
by the workload increase than the configurations of the geographic location of the
database replicas. So far, there is no study that has considered measuring the
consistency guarantees of cloud-hosted data storage services in geo-replicated
deployments. This issue should be considered in a comprehensive consistency
benchmark. Specifically, such a benchmark should analyze the impact of differ-
ent levels of geo-distribution on consistency guarantees.

Multi-tenancy Multi-tenancy is an optimization mechanism for cloud-hosted
services in which multiple customers are consolidated onto the same system so
that the economy of scale principles help to effectively drive down the opera-
tional cost. One challenge of multi-tenancy in cloud storage services is to achieve
complete resource separation and performance isolation of tenants hosted on the
same physical server. In practice, the performance for any hosted tenant can turn
to be a function of the workloads of other tenants hosted on the same server. A
comprehensive benchmark should consider all kinds of cross-effects that could
happen between the different tenants.

Node Failure Consideration Inconsistencies in cloud storage systems are
often caused by failures. While it is certainly interesting to consider failures,
this is not possible when running black box tests, e.g., against cloud storage
services, where injecting artificial failures is not an option. If access to the replica
servers is possible, a comprehensive benchmark should also consider the effects
of different failure types (e.g., node crash-stop, crash-recover or byzantine) on
the consistency guarantees of the underlying storage system.



8

Fig. 2: Benchmark Architecture

3 Consistency Benchmark Design

3.1 Benchmark Architecture

A comprehensive consistency benchmark needs to consider the challenges pointed
out in the previous section. From a more technical perspective, it is desirable
to reuse existing components and to assert that the benchmark is extensible
and flexible. We propose to use a plugin model where the component which is
actually measuring consistency is augmented with additional modules if desired.
Figure 2 illustrates the basic architecture of our framework with the following
main components:

– Workload Generator: This component is used to create different work-
loads on the system to allow the quantification of consistency effects during
phases of resource saturation. It should also report results for standard per-
formance metrics like latency or throughput to quantify tradeoffs between
consistency and performance.

– Tenant Simulator: The Tenant Simulator is used to create a specific kind
of behavior for individually simulated tenants of a storage system. While the
workload generator just creates load on the system, this component might
create a more detailed behavior of a single tenant so that multi-tenant cross-
effects on consistency can be studied.

– Consistency Measurement Component (CMC) This is the component
which is responsible for measuring the consistency guarantees of the under-
lying system. Its output should use meaningful and fine-grained consistency
metrics from a client perspective.

– Failure Injector: The Failure Injector is a component which can be used
with self-hosted storage systems and can cause a variety of failures.

It could also be reasonable to include a benchmark scheduling and deployment
component, e.g., [18], to ease benchmarking of various configurations and sys-
tems.

3.2 Benchmark Implementation

For the implementation, we propose to reuse existing, proven tools and to patch
them together using shell scripts. The consistency benchmarking tool of Bermbach



9

and Tai [5] has been used for a large number of consistency benchmarks with
various storage systems and services. We extended it slightly to also measure
violations of RYWC and MWC so that it, combined with the existing code,
measures data for all metrics discussed above. As these continuous, and thus
fine-grained, consistency metrics take a client perspective they should be mean-
ingful to application developers. As the benchmarking approach itself relies on
a distributed deployment it lends itself to studying the effects of geo-replication.
An extension, measuring consistency after delete operations, is currently being
developed. Therefore, we will use this tool as our CMC.

The Yahoo! Cloud Servicing Benchmark (YCSB) [12] is the most well known
benchmarking framework for NoSQL databases. The tool supports different
NoSQL databases and various kinds of workloads and has been designed to
be extensible in both dimensions. We will use it as our Workload Generator
Component.

So far, we have not included implementations for a Tenant Simulator which
is ongoing work at KIT. We have also not used a Failure Injector but Simian
Army8, which was published as open source by Netflix9, is a promising candidate
for future experiments.

The benchmarking tool is extensible for use with all kinds of storage systems.
Both our CMC as well as YCSB use an adapter model where the tool itself in-
teracts only with an abstract interface while concrete implementations describe
the mapping to the storage system itself. The CMC requires only a key-value
interface (even though more complex interfaces can be studied as well) which
can be fulfilled by all kinds of systems. YCSB uses the abstract operations in-
sert, update, delete, read and scan for different workloads. Depending on the
system itself and the kind of workloads whose influence shall be studied, differ-
ent combinations of those operations can be used. A Failure Injector could also
use a multi-cloud library to create machine failures as well as a similar database
adapter framework to cause database failures. The Tenant Simulator could use
the same adapter framework as YCSB.

4 Evaluation

To show the applicability of our consistency benchmarking approach, we studied
how geo-distribution of replicas combined with two different workloads affects
the consistency guarantees of Cassandra and MongoDB. We chose these systems
as Cassandra is a popular example of a peer-to-peer system whereas MongoDB
is typically (and was during our tests) configured in a master slave setup.

4.1 Experiment Setup

For our evaluation, we ran the following three benchmarks on Amazon EC210,
each with Cassandra and MongoDB:

8 github.com/Netflix/SimianArmy
9 netflix.com

10 aws.amazon.com/ec2



10

– Single-AZ: All replicas were deployed in the region eu-west within the same
availability zone11.

– Multi-AZ: One replica is deployed in each of the three availability zones of
the region eu-west.

– Multi-Region: One replica is deployed in three different regions: eu-west,
us-west (northern California) and asia-pacific (Singapore).

All replicas were deployed on m1.medium instances, whereas the CMC was run-
ning on m1.small instances distributed according to the respective test. YCSB
was deployed on an m1.xlarge instance. Both YCSB and the writer machine of
the Consistency Measurement Component as well as the MongoDB master were
deployed in the eu-west-1a availability zone. We used a simple load balancer
strategy for all tests, where requests were always routed to the closest replica.
Cassandra clients were configured to use consistency level ONE for all requests.

During each test, we left the storage system at idle for at least 30 minutes
before we started the Consistency Measurement Component. After another 30
minutes we then started YCSB running workload 1. When YCSB was done,
we again waited for the storage system to stabilize before running workload 2.
Finally, after completing workload 2, we asserted that the system stabilized again
at the levels before each workload. This resulted in about 1000 to 1300 writes of
the CMC per benchmark for which we measured our consistency metrics.

There were no cross effects between the three different tests as we started
each storage system cluster from scratch. Both workloads comprised one million
operations on 1000 records. Workload 1 had 80% reads and 20% writes, while
workload 2 was configured the other way around.

4.2 Results

Effects of Workload Surprisingly, the workloads barely affected the incon-
sistency window (t-visibility) of both systems. We used Amazon CloudWatch
to also measure the CPU utilization and network IO of the replicas and the
YCSB instance. In all cases network IO of the “master” replica12 seemed to be
the bottleneck. During one benchmark, while we were still testing the setup of
our scripts, we managed to overload the CPU of Cassandra’s “master” replica.
During that period we observed very high staleness values. Obviously, when the
CPU is saturated, the consistency behavior becomes completely unpredictable.
Table 1 shows the CPU utilization that we encountered during our experiments.

During one of the tests (Cassandra in the multi-region setup), we were able to
see an effect of the workloads on the inconsistency window. Figure 3 shows how
staleness values changed over time during that experiment (the graph shows
a moving average to remove extreme values). The boxes indicate the periods
during which the two workloads were running.

11 On AWS, availability zones describe completely independent data centers located
next to each other within the same geographical region. AWS regions each have at
least two availability zones and are geographically distributed.

12 The load balancing strategy that we chose effectively asserted that all updates orig-
inated on the same replica.



11

Workload

System Replica Type idle CMC only read-heavy update-heavy

Cassandra
Update Coordinator <5% ca. 20% 70-80% 70-80%

Other Replica <5% 15-20% ca. 25% 25-40%

MongoDB
Master <5% 20% ca. 25% 35-40%

Slave <5% 5-10% ca. 25% 35-40%

Table 1: CPU Utilization During Consistency Benchmarks

Fig. 3: Change of Staleness over Time (Cassandra, Multi-region Setup)

4.3 Effects of Geo-Distribution

For Cassandra, about 98% of all requests created an inconsistency window be-
tween zero and one milliseconds when deployed within a single availability zone.
As there was only a single maximum value of 38ms, we do not show a chart
for this. For the setups where replicas were distributed over three availability
zones or regions respectively, Figure 4 shows the observed density functions for
the inconsistency windows. We have excluded extreme values from our results to
increase clarity of the chart. As expected, it is fairly obvious that increasing the
level of geo-distribution increases staleness. We did not encounter any violations
of MRC, MWC or RYWC which is caused by both the load balancing strategy
that we chose (routing requests to the closest replica) as well as the fact that
our benchmarks did not encounter any obvious failures.

For MongoDB, the results were slightly different. As expected, the setup
with replicas distributed over different regions showed the longest inconsistency
window. We would have expected to see again a value of close to zero for the
single availability zone setup and a slightly larger value for the setup in multiple
availability zones. Interestingly though, this was exactly the other way around.
See Figure 5 for the density functions of observed inconsistency windows on
MongoDB.

When looking at the detailed results for the individual replicas13, it becomes
obvious that it was always the same replica that was lagging behind. When
we excluded this replica, results are again as expected: More than 96% of all

13 We do not report those detailed results here due to space limitations, but the CMC
logs the result of every single datastore interaction as well as the corresponding
timestamp and latency.



12

(a) Replicas in Different Availability
Zones (b) Replicas in Different Regions

Fig. 4: Distribution of Inconsistency Windows in Cassandra

Fig. 5: Distribution of Inconsistency Windows in MongoDB

requests show an inconsistency window of 5ms or less in the single availability
zone setup. We believe that this could be caused by one of two effects which are
both related to problems with the respective virtual machine. Either the third
replica had a problem (possibly due to a resource-greedy tenant on the same
physical machine) and was really lagging behind or the CMC reader for this
replica had a clock synchronization issue which caused its clock to lag by around
10ms behind. Normally, this should not be an issue as our CMC component
was started about 24 hours in advance to allow for a slow clock synchronization
process14. In this case, one possible reason for causing this effect is a problem
with the virtual machine of the CMC reader. However, further investigation is
required to verify if other reasons could be behind this effect.

During our multi-region tests with both Cassandra and MongoDB, we could
observe that the Singapore region usually added another 15 to 20ms to the incon-
sistency window already caused by the us-west replica. Obviously, the connection
to the Singapore replica was the limiting factor in our setup.

4.4 Additional Observations

For Cassandra, we also repeated a multi-region setup with a fourth replica in
the region sao-paulo and varied the write consistency level of Cassandra which
describes the number of replicas that need to acknowledge a write request so
that it terminates successfully. In all of our tests, we could not see any variance
in the staleness levels due to the write consistency level chosen. Obviously, the

14 ntp.org recommends about 4 hours, so we really played it safe here.



13

write consistency level is rather a durability level than a consistency level as the
system does not block dirty reads. This implies that in a geo-distributed setting
the updates might be visible on some replicas before the request commits at
the coordinator of the write which, in essence, corresponds to something like
“negative staleness”. Apart from increased request latency there was no effect
on the system.

5 Related Work

Several studies have been presented as an attempt to quantify the consistency
guarantees of cloud storage services. Wada et al. [26] presented an approach
for measuring time-based staleness by writing timestamps to a key from one
client, reading the same key and computing the difference between the reader’s
local time and the timestamp read. However, this approach is very primitive
and imprecise and is, hence, unsuitable in a production environment. In par-
ticular, systems often use a certain degree of sessions stickiness so that most
inconsistencies will never become visible to the single client. Arguably, a more
complex interaction pattern between benchmarking client and datastore could
also be interesting. These limitations hurt the accuracy and meaningfulness of
the reported measurements. Bermbach and Tai [5] have addressed parts of these
limitations by extending the original experiments of [26] using a number of read-
ers which are geographically distributed. They measure the inconsistency win-
dow by calculating the difference between the latest read timestamp of version
n and the write timestamp of version n + 1. Their experiments with Amazon
S3 showed that the system frequently violates monotonic read consistency and
exposes very high degrees of staleness. Using the individual reader’s read times-
tamps their approach also allows to easily describe monotonic reads violations
as well as the probability of reading fresh or stale data (including the degree
of staleness) as a function of the duration since the last update. The accuracy
of their measurements in contrast to the single reader-writer setup, though, is
limited by the accuracy of the clock synchronization protocol used.

Anderson et al. [2] and Golab et al. [16] presented an offline algorithm and its
online analysis extension that builds a dependency graph based on the clients’
operation logs and searches for cycles in that graph. Their approach allows to
check for violations of safety, regularity and atomicity which are properties de-
veloped by the theoretical distributed systems community. It is unclear what the
implications of their results are for both system providers (data-centric view) or
application developers (client-centric view). Rahman et al. [21] have presented a
first step towards defining a standard consistency measurement benchmark and
extended their previous work to also consider, e.g., ∆-atomicity and k-atomicity.
k-atomicity describes an atomic execution where a maximum version lag of k
units could be observed. ∆-atomicity does the same for time. We believe that
these metrics are insufficient for benchmarking consistency guarantees of cloud
storage systems for several reasons: First, these metrics are very coarse-grained
in that they just return the single maximum inconsistency value which could be



14

observed. For example, in the results of [5] only the highest measurement spike
would be reported. Second, although these metrics are from a client perspective,
it is unclear how they might be helpful to an application developer. Third, the
measurements are highly dependent on the client workload and are, thus, likely
to be not reproducible. We believe that their approach is, hence, more suitable
for monitoring a consistency health status for a production application where
it may be necessary to react to severe consistency violations whereas for bench-
marking purposes more detailed metrics are needed which provide meaningful
information to application developers.

Zellag and Kemme [27] have proposed an approach for real-time detection
of consistency anomalies for arbitrary cloud applications accessing various types
of cloud datastores in transactional or non-transactional contexts. In particular,
the approach builds the dependency graph during the execution of a cloud appli-
cation and detect cycles in the graph at the application layer and independently
of the underlying datastore. One of their main assumptions though, that of a
causally consistent datastore, makes it impractical to use with today’s eventually
consistent storage systems. We expect future extensions to resolve this issue.

Bailis et al. [3] presented an approach that provides expected bounds on
staleness by predicting the behavior of eventually consistent quorum-replicated
data stores using Monte Carlo simulations and an abstract model of the storage
system including details such as the distribution of latencies for network links. In
general, predicting staleness, if accurate, can be used in a variety of ways, such
as performance tuning, monitoring system service level agreements and feedback
control. Still, a simulation approach is inherently limited in its accuracy as it
is only an approximation based on the influence factors considered within the
model. Furthermore, PBS is limited to Dynamo-style quorum systems and, thus,
not applicable to systems like MongoDB.

Patil et al. [20] also propose to measure staleness in terms of time. Their
benchmarking approach, though, can only serve as a rough approximation for
consistency as it is subject to the same limitations as the approach described by
Wada et al. [26] and also incurs additional inaccuracies due to the way values
are measured.

6 Conclusion

In this paper, we presented the first steps for building a standard comprehen-
sive benchmark for quantifying the consistency guarantees of cloud-hosted stor-
age systems. We identified meaningful and fine-grained continuous metrics, the
main challenges and requirements for such a benchmark and proposed an archi-
tecture for a corresponding benchmarking system. Afterwards, we showed how
a comprehensive benchmarking tool could be built reusing proven, standard
components. We then used this benchmarking tool to evaluate the effects of geo-
replication and different workloads on two popular NoSQL systems, Cassandra
and MongoDB, and also studied how different write quorums in Cassandra affect
consistency.



15

In future work, we plan to also include a Tenant Simulator and a Failure
Injector, as outlined in section 3, and use it to study the effects of various kinds
of failures as well as cross-tenant effects on consistency guarantees of eventually
consistent storage systems. We also plan to run additional benchmarks on other
storage systems in all kinds of consistency benchmark setups using the compo-
nents presented within this work. Furthermore, we intend to continue our efforts
towards a standardized comprehensive consistency benchmark comparable to
performance benchmarks like TPC-W.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design:
Cap is only part of the story. Computer 45(2) (2012)

2. Anderson, E., Li, X., Shah, M.A., Tucek, J., Wylie, J.J.: What consistency does
your key-value store actually provide? In: HotDep (2010)

3. Bailis, P., Venkataraman, S., Franklin, M., Hellerstein, J., Stoica, I.: Probabilisti-
cally bounded staleness for practical partial quorums. PVLDB 5(8) (2012)

4. Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A., Larson, J., Léon, J.M.,
Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing scalable, highly available
storage for interactive services. In: Proc. of CIDR. pp. 223–234 (2011)

5. Bermbach, D., Tai, S.: Eventual consistency: How soon is eventual? an evalua-
tion of amazon s3’s consistency behavior. In: Proceedings of the 6th Workshop on
Middleware for Service Oriented Computing (2011)

6. Bermbach, D., Kuhlenkamp, J.: Consistency in distributed storage systems: An
overview of models, metrics and measurement approaches. In: Proceedings of the
International Conference on Networked Systems (NETYS). Springer (2013)

7. Bermbach, D., Kuhlenkamp, J., Derre, B., Klems, M., Tai, S.: A middleware guar-
anteeing client-centric consistency on top of eventually consistent datastores. In:
Proceedings of the 1st International Conference on Cloud Engineering (IC2E).
IEEE (2013)

8. Binnig, C., Kossmann, D., Kraska, T., Loesing, S.: How is the weather tomorrow?:
towards a benchmark for the cloud. In: Proceedings of the Second International
Workshop on Testing Database Systems (2009)

9. Bod́ık, P., Fox, A., Franklin, M.J., Jordan, M.I., Patterson, D.A.: Characterizing,
modeling, and generating workload spikes for stateful services. In: SoCC (2010)

10. Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC (2000)

11. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for
Structured Data. ACM Trans. Comput. Syst. 26(2) (2008)

12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing. pp. 143–154. ACM (2010)

13. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., et al.: Spanner: Googles globally-
distributed database. To appear in Proceedings of OSDI p. 1 (2012)

14. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP (2007)



16

15. Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., Tosun, C.: Bench-
marking in the Cloud: What it Should, Can, and Cannot Be. In: Nambiar, R.O.,
Poess, M. (eds.) TPCTC. Lecture Notes in Computer Science, vol. 7755. Springer
(2012)

16. Golab, W., Li, X., Shah, M.: Analyzing consistency properties for fun and profit. In:
Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles
of distributed computing. pp. 197–206. ACM (2011)

17. Gray, J. (ed.): The Benchmark Handbook for Database and Transaction Systems
(1st Edition). Morgan Kaufmann (1991)

18. Klems, M., Bermbach, D., Weinert, R.: A runtime quality measurement framework
for cloud database service systems. In: Proceedings of the 8th International Con-
ference on the Quality of Information and Communications Technology. Springer
(2012)

19. Lakshman, A., Malik, P.: Cassandra: A structured storage system on a p2p net-
work. In: Proceedings of the twenty-first annual symposium on Parallelism in al-
gorithms and architectures. pp. 47–47. ACM (2009)

20. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs,
A., Rinaldi, B.: Ycsb++: benchmarking and performance debugging advanced fea-
tures in scalable table stores. In: Proceedings of the 2nd ACM Symposium on
Cloud Computing. p. 9. ACM (2011)

21. Rahman, M.R., Golab, W.M., AuYoung, A., Keeton, K., Wylie, J.J.: Toward a
Principled Framework for Benchmarking Consistency. In: HotDep (2012)

22. Sakr, S., Liu, A., Batista, D.M., Alomari, M.: A Survey of Large Scale Data Man-
agement Approaches in Cloud Environments. IEEE Communications Surveys and
Tutorials 13(3), 311–336 (2011)

23. Silberstein, A., Chen, J., Lomax, D., McMillan, B., Mortazavi, M., Narayan, P.P.S.,
Ramakrishnan, R., Sears, R.: PNUTS in Flight: Web-Scale Data Serving at Yahoo.
IEEE Internet Computing 16(1) (2012)

24. Tanenbaum, Andrew S. ; Steen, M.v.: Distributed systems : principles and
paradigms. Pearson, Prentice Hall, Upper Saddle River, NJ, 2. ed. edn. (2007)

25. Vogels, W.: Eventually Consistent. Queue 6 (October 2008), http://doi.acm.org/
10.1145/1466443.1466448

26. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data Consistency Properties
and the Trade-offs in Commercial Cloud Storage: the Consumers’ Perspective. In:
CIDR (2011)

27. Zellag, K., Kemme, B.: How Consistent is your Cloud Application? In: SoCC (2012)
28. Zhao, L., Sakr, S., Fekete, A., Wada, H., Liu, A.: Application-Managed Database

Replication on Virtualized Cloud Environments. In: Data Management in the
Cloud (DMC), ICDE Workshops (2012)

29. Zhao, L., Sakr, S., Liu, A.: Application-Managed Replication Controller for Cloud-
Hosted Databases. In: IEEE CLOUD (2012)


