
Informed Schema Design for Column Store-based
Database Services

David Bermbach∗, Steffen Müller†, Jacob Eberhardt∗ and Stefan Tai∗
∗TU Berlin, Information Systems Engineering Research Group, Email: {db,je,st}@ise.tu-berlin.de
†Karlsruhe Institute of Technology, Institute of Applied Informatics, Email: st.mueller@kit.edu

Abstract—While database schema options in relational
database management systems are few and have been studied
for decades, little effort has so far been devoted to NoSQL
column stores. Today, schema design for column stores is still
based on the gut feeling of the application developer instead of
being approached systematically. This is even more critical as
“good” schemas in column stores do not only depend on the data
model of the application but also on the queries on that data:
Poor schema design will either lead to a situation where not all
queries can be answered or where some queries will show really
poor performance. In this paper, we propose a systematic and
informed approach to database schema design in NoSQL column
stores by means of automated schema generation and application-
specific schema ranking.

Keywords—NoSQL Systems, Column Stores, Schema Design.

I. INTRODUCTION

Enterprise application systems and service-oriented archi-
tectures typically use a dedicated database layer or database
service to handle persistent storage. Apart from object databases
in combination with object-oriented programming languages,
though, there is always a mismatch between the internal data
structure of the application and the data structure of the
underlying database system. For instance, today’s most common
system combination – object-oriented applications running on
top of relational database systems (RDBMS) – use objects and
references or tables and foreign keys respectively. These data
structures are not per se compatible and require some kind
of mapping which has two main aspects: a database schema
describes how the application’s data is represented using the
data structures of the database; query mappers, in contrast, are
concerned with translating operations or information desires
from within the application into queries that can be executed
on the database and vice versa.

For RDBMS, both aspects are well studied [1]–[3]: re-
lational database schema design is based on normalization
and query mappers use object-relational mapping (ORM)
techniques.

Over the last few years, though, a new class of database
systems – which are typically referred to as NoSQL systems –
has evolved. Usually, these systems are grouped into the
three categories key-value store (e.g., Amazon S31), column
store (e.g., Apache Cassandra2), and document store (e.g.,
MongoDB3) [4]. Probably for all of these systems, but certainly
so for column stores, database schema design is today mainly

1aws.amazon.com/s3
2cassandra.apache.org
3mongodb.org

done based on the gut feeling of the application developer.
While a systematic approach to designing column store schemas
is still missing, reusing existing approaches from relational
schema design will incur very poor performance:

Current column stores do not support queries spanning
multiple tables and normalized schemas effectively maximize
the number of tables. Therefore, a normalized schema will have
the effect that a large number of queries is either not answerable
or must be computed within the application. Computing queries
within the application, though, does not only increase the
burden of application developers but is also highly inefficient
in terms of performance as well as, typically, network load.
Since answering all queries is mandatory, normalized schemas
will maximize the number of queries that have to be computed
within the application and, thus, lead to very poor performance.

While it is, thus, certainly possible to reuse classical
database schema design techniques like normalization, this
will, in most scenarios, also be the most inefficient way of
using column stores: The key to efficient use of NoSQL
column stores lies in denormalization and data redundancy,
leveraging knowledge on the concrete queries triggered by
the application. Where schema options in normalization are
few, though, denormalization typically leads to many different
schema options which are all more or less feasible but not
necessarily reasonable choices. At the moment, this schema
design process is entirely left to the gut feeling of the application
developer and is also a manual approach – we aim to improve
this process with the following contributions of this paper:

• A systematic approach which creates a set of feasible
schema options. This approach leverages knowledge
on the application’s data entities and their relationships
as well as the queries on these entities.

• A scoring function to rank the schema options. While
our evaluation demonstrates that already a very simple
scoring function suffices to provide recommendations
that are at least as good as the ones by column store
experts, we also give an overview of additional metrics
that could enhance the scoring function.

• A proof-of-concept implementation which automates
this schema design process. In its current state, very
few manual tasks are left which we will automate in
the next prototype version.

This paper is structured as follows: In section II, we
recapitulate column stores concepts as well as data denor-
malization techniques and discuss related work. Afterwards, in
section III, we present our systematic schema design approach
for NoSQL column stores, the scoring function with its potential



enhancements, and our proof-of-concept implementation. Next,
in section IV, we discuss the current state and the limitations of
our approach. Finally, we evaluate our approach by comparing
its results to the recommendations of the Twissandra [5] use
case in section V before concluding in section VI.

II. BACKGROUND AND RELATED WORK

In this section, we will give an overview of the background
relevant to our approach and related work. For this purpose,
we first discuss column stores and denormalization techniques
before demonstrating the differences to related approaches.

A. Column Stores

Column stores are arguably the most popular type of NoSQL
system which can be seen in their widespread adoption, e.g.,
in the context of Apache Hadoop4 or at Netflix5, one of the
main contributors to Apache Cassandra6. Furthermore, a large
number of column stores is available as open source which
are all more or less based on the original design proposed
for Bigtable [6] – especially, the data format of Bigtable: “A
Bigtable is a sparse, distributed, persistent multi-dimensional
sorted map. The map is indexed by a row key, column key,
and a timestamp; each value in the map is an uninterpreted
array of bytes.” [6].

Basically, this design extends the simple distributed map of
key-value stores so that the value of the map becomes another
map which may have separate entries for any keys of the
outer map. When all inner maps use the same set of keys, i.e.,
there is a fixed database schema, then the column store can be
represented as a kind of table where the key of the outer map
defines the row and the key set of the inner map(s) defines
column names. While the table-like structure may look similar
to database tables in RDBMS, this is deceiving as there are
several key differences. For instance, the database schema, i.e.,
the key set of the inner map, is not fixed unless enforced within
the application and only the row key is indexed so that queries
which retrieve rows based on some other column have to scan
the entire cluster. Recently, some systems, e.g., Cassandra, have
introduced secondary indexes which are expensive in terms of
performance, though. Furthermore, there is typically no support
for JOIN operations which have to be implemented at the
client if necessary. Hence, while the strength of column stores
is elastic scalability, they come with a reduced set of queries
they support so that neither migrating an application developed
for RDBMS to column stores nor designing new applications
on top of column stores can be deemed trivial.

Finally, column stores like all NoSQL systems also typically
offer only eventual consistency [7], [8] with varying degrees of
staleness and ordering behavior [9]–[11] and very little support
for transactions in favor of availability and latency [12]. This
should always be kept in mind during the schema design as
any query which is broken down into multiple requests may
be affected.

In this paper, we will refer to the data structure of column
stores as tables, rows, and columns since we focus on the
design of (fixed) database schemas based on entities and their

4hadoop.apache.org
5netflix.com
6cassandra.apache.org

relationships. Therefore, the flexible schema options of column
stores will not have too much influence in this scenario, but
talking about “columns” instead of “keys of the inner maps
identical across all outer map’s values” improves readability of
this paper. Furthermore, while our notion of “queries” is not
limited to SQL, we will in this paper use SQL-like syntax for
expressing different query concepts.

B. Data Denormalization

Denormalization techniques have for many years been an
active field of research in the context of RDBMS [1]–[3].
These techniques can improve performance, but come at the
cost of potential anomalies and inconsistencies which require
further handling. As JOIN operations are comparatively cheap
in RDBMS, denormalization is only used to meet critical
performance requirements. Typically, though, denormalization
is avoided.

NoSQL systems are vastly different in that regard: JOIN
operations are typically not supported and would be very
expensive due to the distribution of data across multiple
machines. Thus, denormalization becomes an essential tool
in schema design – much more than a method for optimization
in rare cases. Here, denormalization describes the process of
reworking a database schema in a way that it is no longer in
third normal form (3NF) and, thereby, trades data redundancy
in favor of performance.

Based on Sanders and Shin [1], there are four denormal-
ization strategies for RDBMS, which can also be applied
to column stores: collapsing tables, splitting tables, adding
redundant columns and derived attributes (i.e., results of
aggregate functions).

NoSQL systems typically partition data across storage nodes
automatically and derived attributes cannot be calculated on the
fly by those systems as they would involve reading from the
entire cluster. Collapsing tables and adding redundant columns
are strategies which can help to avoid JOIN operations, these
are, therefore, also the tools of choice in our approach (see
section III-B) and related work [13]–[15]. With our approach,
we do not introduce new data denormalization techniques,
but rather aim to answer the question when and where to
denormalize in which way.

C. Schema Selection for Column Stores

Scherzinger et al. [16] show, that schema choices in column
stores can have profound effects on performance in the case of
the Google App Engine7 datastore. Obviously, optimal schema
selection can not be easily derived by normalization, as for
RDBMS, but rather depends on application requirements and
usage patterns.

Mior [15] motivates the need for an automated schema
generation approach, identifies relevant trade-offs and proposes
a non-monetary cost model without specifying it in detail. No
solution approach is presented, the paper merely motivates
future work in the field by examining an example use case.

Vajk et al. [14] use a subset of the relational Twitter8 data
schema which they denormalize in order to identify a column

7appengine.google.com
8twitter.com



store schema with minimal monetary cost. Their cost function
considers storage and query cost along a predefined query load.
No generalizable approach is provided, though, which would
be applicable to more general use cases. Furthermore, we are
not sure how reasonable it is to optimize for monetary cost
only instead of considering perfomance.

Vajk et al. [13] provide a formal algorithm which derives
a schema minimizing monetary cost of storage for column
stores based on an initial relational schema. The proposed
algorithm denormalizes by resolving functional dependencies
between relations, whereas we, in contrast, will later introduce
an approach leveraging knowledge on actual queries. The cost
function they propose to rank schema options calculates the
actual monetary cost for the service operator – the determination
of an adequate cost function, however, is not described in the
paper. Furthermore, the sole use of a monetary cost function
implicitly assumes that there is no difference in performance
between the schema options derived by the algorithm, which
is usually not the case, e.g., see the work by Scherzinger
et al. [16] discussed above. This approach might, therefore,
overvalue inexpensive schema options with poor performance.

Furthermore, secondary indexes available in many column
stores (e.g., in Cassandra or DynamoDB9) are not considered,
which limits the value of recommendations their approach
can make, as those indexes can heavily influence performance
and should, therefore, also affect the schema design process.
In general, we believe that the output of their approach may
partly overlap with our results but that our recommendations
will show much higher operational performance. Since their
publication did not include an evaluation, we could not verify
this hypothesis experimentally.

All these approaches seem to be in a very early stage
and none of them come with an implementation enabling
informed database schema design by means of automated
schema generation and application-specific schema ranking.

III. A METHOD FOR INFORMED DATABASE SCHEMA
DESIGN IN COLUMN STORES

In this section, we will present our novel method for
an informed schema design based on knowledge of the
application’s queries and data model. For this purpose, we
will start with a high-level overview of our approach in
section III-A, where we also discuss current assumptions and
limitations. Afterwards, we will provide the details for both
phases of our approach, schema creation (section III-B) and
schema assessment (section III-C). Finally, we will give a brief
overview of our proof-of-concept implementation which is the
last necessary step towards informed database schema design
for column stores leveraging automated schema generation and
application-specific schema ranking (section III-D).

A. Overview and Assumptions of the Approach

The basic idea behind our approach is, to optimize the
database schema for read access. The implication of this is,
that each read query which is known in advance can be fulfilled
by just a single request to the column store. In contrast, write
queries will have to issue multiple requests per query. We made
this design decision for the following three reasons:

9aws.amazon.com/dynamodb

First, optimizing for writes will lead to low numbers of
requests (but not necessarily just one) per write query. This
has catastrophic implications for read queries, though, which
will have to issue multiple requests to the column store which
leads to high data volumes transferred (as most queries then
have to be computed within the application since the database
system does not provide the necessary query features) as well
as unpredictable quality of results in the face of eventual
consistency [7], [8], [17] and lack of transactional features. In
contrast, optimizing for reads will lead to just a single request
per read query and low to medium numbers of requests for
updates – and consistency guarantees largely do not matter. See
also the detailed discussion in section IV-A. Hence, the effect
of optimization is less severe for the other kind of operation
when optimizing for reads.

Second, typical OLTP scenarios will involve a large propor-
tion of read queries which makes our approach suitable for these
scenarios. For scenarios without any reads (or very few reads),
though, the application developer is better off not optimizing
for read performance but rather for write performance, e.g., for
use cases like persistence of log data. In that kind of scenario,
an approach that only targets write performance, e.g., Mior [15],
is a better choice.

Third, any query involving multiple requests will have to be
executed within the application or an underlying middleware
layer. In case of read queries, this might be the calculation
of a JOIN, i.e., a cartesian product, which is rather compute-
intensive and complex. In case of write queries, this would
simply be issuing write requests for multiple target tables
which would be neither compute-intensive nor complex for the
application.

For these reasons, we optimize for reads. The optimization
process itself can be broken down into a schema creation
and a schema assessment phase. During the schema creation
phase, all feasible schema options are created, optimizing for
all known read queries. Afterwards, in the schema assessment
phase, these different schema options are ranked according to
a custom scoring function which may use arbitrary metrics.
Figure 1 gives a high-level overview of the individual steps
and phases of our approach.

The schema creation phase itself can be broken down into
several steps: First, we identify all possible ways in which a
single column store table could answer a given read query with
just one read request; we create a table variant for each way.
Second, we need to build schema options from this, including
one table per read query. As some table variants might be more
efficient in combination than others (which we cannot know at
this step), we create the cartesian product of all table variants
as schema options. Third, we try to merge tables within all
schema options as far as possible since some queries (e.g., q1
and q3 from table I) might be subsets of each other or intersect.
Fourth, we remove duplicate schema options that have been
created through the merging process. Fifth, we check for all
write queries whether they can still be executed. If that is not
the case, (for instance, when we cannot identify all copies
of the record which needs to be updated) we add additional
look-up tables where necessary.

As we will see, the first two steps of the schema creation
phase potentially create many different schema options which



Schema Creation: 
=> Create all feasible schema options 

Schema Assessment: 
=> Rank all schema options 

Create table 
variants for 
reads 

Create 
schema 
options 

Merge tables 
within 
options 

Remove 
duplicate 
options 

Add lookup 
tables for 
writes 

Fig. 1: Overview of the Systematic Schema Design Approach
is a both tedious and error-prone task when done manually.
We, therefore, propose to fully automate our approach, e.g., by
means of our proof-of-concept implementation.

Apart from the assumptions already mentioned, i.e., that
we do not optimize for write-heavy workloads and that we can
only optimize for queries that are known at schema creation
time, our approach currently does not support subqueries10 or
aggregation functions. We believe that queries using subqueries
can either be transformed into a query without subqueries or can
be run sequentially by the application. Regarding aggregation
functions, most column stores implement CRDT-like [18] data
structures which could be used for this purpose.

B. Phase 1: Schema Creation

In this section, we will describe the different steps of the
schema creation phase which vary in their respective complexity.
We start with the creation of table variants in section III-B1
and continue with the creation of schema options based on the
table variants in section III-B2. Afterwards, we present a set
of rules according to which we merge tables within schema
options (section III-B3). Finally, we describe how we remove
duplicate schema options (section III-B4) and add additional
look-up tables for writes where necessary (section III-B5) .

1) Step 1a: Identifying Table Variants for Read Queries:
Our approach starts by analyzing all SELECT queries and
JOIN queries; it identifies for each query all affected entities
as well as the respective fields which are either (or both) part
of the selected fields or the filter fields. Selected fields are the
fields returned by a query whereas filter fields are either JOIN
criteria or fields that are checked for meeting a certain condition
(WHERE clause). For instance, q1 from table I has the affected
entity customer, the selected fields fname and lname, and the
filter field fname.

Based on this, our approach builds table variants such that
all executions of the respective query can be executed by a
single GET request to the column store. This means that if
the respective query contains a JOIN, then this JOIN will be
precomputed into one single table. The table will, therefore,
include fields from both entities. In either case, all selected
fields will become part of the table.

To maintain uniqueness constraints on row keys, we propose,
to build the row key by combining the desired filter field with
the original primary key. This way, row keys are unique but
we can still query the data based on the desired filter field only
– in the case of Cassandra leveraging “compound keys” or for
DynamoDB via “hash and range keys”.

Dealing with the filter fields is more complex, since this
may result in several table variants depending on the number of
filter fields as well as the number of available secondary indexes.
Since column stores support only row key-based look-up (and
in some cases via one or more secondary indexes), selecting

10Subqueries are also referred to as nested queries or inner queries.

Query ID Query

q1 SELECT fname, lname FROM customer WHERE fname=?
q2 SELECT fname, lname FROM customer WHERE age=?

AND address=? AND lname=?
q3 SELECT fname, lname, address FROM customer

WHERE fname=?
q4 UPDATE customer SET lname=? WHERE fname=?
q5 INSERT INTO customer (fname,lname,age,address)

VALUES (?,?,?,?)

TABLE I: Listing of Example Queries
Row Key Secondary Index Other Selected Columns

age address lname - fname
age address lname fname
age lname address fname
address lname age fname
lname age address fname
address age lname fname
age address lname fname
- age address lname fname

TABLE II: Table Variants for q2 with one Secondary Index

rows must either be done via the row key or a secondary
index. The only alternative is reading the entire data set and
filtering the records within the application which is inefficient.
Therefore, all filter fields have to be stored in these columns.
For instance, if a column store supports only one secondary
index per table and we stick with the example from above
(fname as single filter field), then fname can either be used as
row key or as secondary index column. In this case, we have
exactly two table variants.

While creating all table variants (even those without a row
key) may seem inefficient, this is necessary as we can within
this step not know which two variants of tables for different
queries we might later be able to merge – thus reducing the
total number of tables.

If there is more than one filter field, then we have another
option: these fields can be concatenated to form a concatenated
column which can be used both as row key or any of the
potential secondary indexes11. Here, again, it is necessary that
also all permutations of concatenated columns are created. As
an example, table II shows all eight potential table variants,
one per row, derived for query q2 from table I in a column
store with one secondary index.

This entire process is repeated for every single SELECT
or JOIN query so that the output of this step is a set of table
variants per query, i.e., the result is one set of table variants
per read query.

2) Step 1b: Creating all Schema Options: Step 1a has
produced all feasible table variants which could answer the
respective query via a single GET request to the column store.
Since we need a full database schema, though, which can
answer all queries, we have to combine the table variants from
step 1a into several distinct schema options. Again, we cannot
know in this step which combinations are “good” combinations.
Therefore, these schema options are calculated as the cartesian
product of all table variants.

For example, if we have the two queries q1 and q2 from
above, as well as a column store with one secondary index,
then the first query has two table variants (fname as row key
or secondary index) whereas the second query has eight table

11In Cassandra, such a column could later be implemented based on
compound keys.



variants (see table II). Accordingly, this leads to 8 ∗ 2 = 16
distinct schema options.

3) Step 1c: Merging Tables within Schema Options: Each
schema option which results from step 1b potentially contains
many tables – one per original query. At the same time, having
low numbers of tables is desirable since this reduces the
overhead both in terms of storage as well as for write queries.
Therefore, we try to merge tables, if possible, in this step. Note,
that our approach takes each schema option and merges its
tables until no further merges are possible.

For example, if we compare queries q1 and q3 from table I,
we can see that the table of q3 can also answer q1 as the q1
table is a strict subset of the q3 table. Since the performance
benefits during writes of having one table less far outweigh
the downside of reading an additional field during reads12, we
can and should drop the q1 table. The only case where this
trade-off should be decided in the other direction (i.e., keeping
both tables is more efficient) would be in the absence of any
kind of write operation – a case where using a content delivery
network would be a better solution anyhow.

This is a relatively simple case, but there are others where
dropping a table is not an option but efficiency can still be
increased by merging the respective tables into one. In the
following, we describe five conditions which all have to be
preserved if two source tables A and B shall be merged into
a target table C. See also table III for a short overview of all
conditions.

Row Key Condition: If both A and B already contain a
row key, they cannot be merged13.

Secondary Index Condition: If the number of secondary
index columns, which would be required in C, exceeds the
number of secondary index columns supported by the column
store, then the tables can not be merged. The number of
secondary indexes needed is calculated by first adding the
number of distinct secondary indexes used by both tables A
and B, i.e., without duplicate entries. In a second step, we
decrease this number by one for every secondary index column
that was built from the same filter fields as the potential key
column of C.

For example, let us assume that there is only one secondary
index available, table A has the secondary index column
fname lname and the key id, and table B has the secondary
index column id. Essentially, we would require two secondary
indexes (fname lname and id) but since one of these columns
(id) is identical to the potential key column of table C and
the key column supersedes a secondary index column during
merges, the merge is still possible. The result would be table
C with id as key and fname lname as secondary index.

Entity-Relationship Condition: If both Key Condition and
Secondary Index Condition are met, the next condition requires
checking the relationships of the original entities where the
columns of A and B came from. This includes both indexed
and non-indexed columns. A merge is basically (as long as the

12We have verified this for Cassandra in experiments.
13This is the reason why all table variants have to be created and why the

schema options must be the cartesian product of all table variants. This will
assert that all other combinations of table variants will also exist in some other
schema option where a merge is then possible.

Column Count Condition – see below – is also met) possible
if all columns from tables A and B are fields of either the
same entity or of two or more entities that are all in direct 1:1
relationship.

If the set of original entities contains one or more 1:n or
n:m relationships, a merge might in rare cases also be sensible
but this requires knowledge on the actual data stored within the
tables A and B. Such a merge would only be possible if both
Column Count and Row Count Condition are met or if either
A or B is a subset of the other. If one or both conditions are
violated, the benefit of merging the tables will be outweighed
by the potentially quadratic growth in data size.

Another corner case would be having at least one not even
transitively related entity among the set of original entities. In
that case, a merge is possible if both the intersection of the
column sets from tables A and B is not empty and the column
count condition is met, i.e., there is a query that has implicitly
defined some kind of relationship between the respective entities.
For all other cases, a merge is not possible.

Column Count Condition: If during a potential merge,
the number of columns would increase for one or both of the
tables by more than a certain threshold value, a merge should
be avoided.

This (special) case would mean that the overhead of reading
additional unutilized columns for at least one of the read queries
weighs heavier than the benefit of reducing the number of tables
for write operations. The threshold should be set based on the
actual data stored in the table (what is the increase in terms of
bytes that have to be additionally transfered over the network
during reads?) as well as the expected workload (what is the
ratio of reads and writes on the respective table(s)?).

In our prototypical implementation, we have for now
approximated this: whenever the number of columns for at
least one query increases by more than a certain configuration
value (default is ten), we still merge the tables but log a warning
so that the user is aware of the problem and can adapt the
settings accordingly.

Row Count Condition: If we try to merge two tables A
and B where A is the result of a JOIN on at least two entities
that are not in 1:1 relationship, then the storage overhead can
potentially increase in a significant way. The easiest way is
never to merge tables in such a scenario, but in some cases the
growth in size might be acceptable compared to the benefit of
reducing the total number of tables. This would, for instance,
be the case if the actually observable relationship shows low
values for n and m respectively.

As a rare corner case: The same holds for merging tables
A and B into a table C if C would then contain the JOIN
of entities that are in 1:n or n:m relationship whereas A and
B do not already contain columns from entities in 1:n or
n:m relationship. This means, we would precompute a JOIN
even though there is no JOIN query for the respective entities
amongst the set of known queries. The decision whether it
makes, nevertheless, sense to merge the tables depends on the
actual data stored within the original entities as null values
usually do not cause a storage overhead whereas additional
rows do. Furthermore, denormalized 1:n or n:m relationships
also increase the overhead for all write operations. Therefore,



Merge Condition Summary

Row Key A and B may not both have a row key.
Secondary Index Removing the row key columns from the union of the filter

columns of A and B must result in a set that fits in the
available secondary index columns.

Entity-Relationship Either one table is a subset of the other, or A and B contain
only fields from tables in 1:1 relationship

Column Count For neither of the queries behind A and B may the number
of columns increase by more than a threshold.

Row Count During a merge, the number of rows may not increase by
more than a threshold.

TABLE III: Overview of the Merge Conditions for Tables A
and B without Corner Cases

the number of rows should not increase by more than a certain
threshold.

The actual merge first builds a set of columns from the
columns of both A and B. In a second step, it removes all
“normal” columns for which a secondary index or row key
column with the same entity-field combination exists. In the
third step, it removes all secondary index columns for which
a key column with the same entity-field combination exists,
i.e., during merges key columns prevail over secondary index
columns which in turn prevail over all other columns while
duplicate columns for the same entity-field combination are
removed.

4) Step 1d: Removing Duplicate Schema Options: From
this step on, only the merged schema options, that resulted
from step 1c, are considered. While the original schema options
are all unique except for some special cases, the set of merged
versions of them may contain duplicates. To increase efficiency,
in this step all duplicates merged schema options are removed.

5) Step 1e: Adding Look-up Tables for Write Queries:
The steps so far have only considered read queries, but there
are also write queries which each have to be handled in a
different way. The basic idea of this step is to check whether a
particular write query can be executed based on the current set
of tables or not (this will typically have a different result for
any of the schema options from step 1d). In the latter case, we
then add an additional table which serves as “look-up” table
to identify the affected records. For this analysis, we have to
distinguish queries that affect an existing data record (UPDATE
and DELETE queries) and operations that create a new record
(INSERT queries).

INSERT Queries: These queries are the easiest to handle
as they do (typically) not affect existing records. For each
query, we only have to identify the entities and fields updated
and create a new row in all tables where one of these fields
occurs. Additional fields within that table may be set to null.
As an example, q5 affects one entity (customer) and four fields
(fname, lname, age, address).

There is one caveat, though: We have to check whether
there is any query that updates an entity for which we also
have a JOIN query. In that case, especially for precomputed
1:n or n:m relationships, inserting a new row requires adding
either null values (if there is no corresponding instance of the
other entity) or adding the correct values for the remaining
columns. Potentially, inserting a value might even require to
add several rows if there is more than one corresponding entity
instance. While this happens at runtime and not during the
schema-design phase, we still have to consider this in this phase.
The only solution, we could think of, is adding a table for the

data of the original other entity as well so that the necessary
information for calculating the new rows in the JOIN table is
available.

For obvious reasons, tables added for the purpose of
INSERT queries may not be merged with other tables.

UPDATE and DELETE Queries: For each of these queries,
we again identify the filter fields and selected fields (affected
fields would be a better name here, but we will stick with
selected fields). Filter fields are the fields referred to in the
WHERE part of a query, whereas selected fields are the fields
that are updated, e.g., in case of q4 the selected field is lname
and the filter field is fname.

Next, we check all tables for occurrence of the set of
selected fields. Whenever a table contains a selected field, we
check whether the key and secondary index columns allow
a look-up via the set of filter fields of our query. If this is
possible for all tables, then we are done. If not, we can choose
to either add the set of filter fields as additional secondary
index column or as row key (if possible) or alternatively add
an additional look-up table which uses the row key and the
secondary index(es) of the target table to identify the respective
rows which need be updated or deleted.

These new tables may also be merged with the existing
read tables as well as amongst each other. Depending on
the combination of storage system, queries, and workload
distribution, the use of secondary indexes might be slower than
using an additional table. It is, therefore, advisable to either use
both approaches in parallel and create separate schema options
from them or to benchmark the performance of secondary index
look-ups in advance and to just create the more efficient option.

Finally, the first approach of inserting additional secondary
index columns might allow additional optimizations later-on:
Apache Cassandra [19], for instance, offers so-called compound
keys. These would allow us to drop the inserted secondary index
column if the contained fields are a subset of the existing row
key.

C. Phase 2: Schema Assessment

While the first phase of our approach has, backed by
our implementation which automates this process, produced
a potentially large number of different schema options, we
propose to use a second phase which is dedicated to ranking the
various alternatives. This is done with the aim of determining
the best solution for the combination of actual column store
used as well as workload details.

In this section, we describe a set of (extensible) metrics
which can be combined into a scoring function (sections III-C1
to III-C3). When multiple metrics are used, these can be
aggregated into a single-value score for each option based on
user-specified weights for the different metrics. Building on this,
we also propose a rather simple scoring function (section III-C4)
which already provides a good assessment of schema options
(see the evaluation in section V)

Obviously, the ranking highly depends on both the concrete
system as well as the actual use case: The more information is
available, the more accurate does the resulting ranking reflect
the fit of the higher ranked schema options to the concrete
use case. As some of that information might simply not be



available, we discuss in the following for each metric how it
can be assessed in an accurate way as well as how it can be
approximated.

1) Weighted Number of Operations for Write Queries:
Ideally, there is for every write query, i.e., UPDATE, DELETE,
or INSERT, just a single table which needs to be updated so
that these queries can be executed by a single request to the
column store. Since our approach optimizes for read queries,
this will rarely be the case. In typical cases, UPDATE and
DELETE queries will have to issue a read request to a look-
up table before actually being able to issue the update or
delete requests for all the tables with redundant copies of the
respective data set. INSERT queries may have to read a table
if they affect entities that are part of a JOIN query.

This, obviously, hurts performance a lot as every request
also adds a network round trip to the query latency. This metric,
therefore, calculates for every query the number of actually
resulting requests to the database system in a first step. Since
some queries might be issued more frequently than others,
the second step then calculates the weighted average of these
numbers, using the frequency of the respective query as weight.

If the frequency of different write queries is not known14,
an approximation may just calculate the average instead of the
weighted average. Alternatively, an even rougher approximation
could simply use the total number of tables.

2) Storage Overhead: When using a cloud-hosted column
store service like Amazon DynamoDB, the storage overhead
of storing redundant copies of some entities’ fields directly
translates into monetary cost. Even when running an open
source column store, e.g., Cassandra [19] or HBase15, the
storage overhead for very large clusters can quickly become a
problem. This is especially true for Cassandra, for which [20]
have shown that the cluster performance significantly degradates
when confronted with very large data volumes per machine.
This might necessitate spawning additional instances to handle
the amount of storage with acceptable performance.

For these reasons, it is important to select a schema
option where the storage overhead, compared to the memory
requirements of a normalized database schema, is as low as
possible. In our storage overhead metric, we have to consider
two dimensions: The first dimension is caused by having
redundant copies of columns in different tables which is
almost guaranteed to be the case for at least a few columns
in every schema option. The second dimension is caused
by precomputing JOINs, i.e., by denormalizing 1:n or n:m
relationships of entities into a single table which typically
causes additional rows in that table in comparison to the
normalized data schema.

The first dimension can be measured relatively straight-
forward by counting for each entities’ fields how often they
are stored redundantly. Again, we can calculate the weighted
average of these values by using the average data size of the
respective field as weight. The resulting number is the expected
factor by which the data volume will grow when using that
schema option compared to the bare storage needs of an entirely
normalized schema. When the average data size of the fields

14This information will rarely be available when developing a new application
but will almost always be available when migrating existing applications.

15hbase.apache.org

is not known, which will at least for application migration
scenarios never be the case, an approximation would be to
assume identical sizes for all fields.

The second dimension is more difficult to measure: Apart
from knowledge on the number of instances of each entity A
and B (which will typically change at runtime anyhow) as well
as average field sizes, it also requires information on the degree
of matching of the joined fields. Depending on the actual degree
of matching the second dimension may cause any overhead in
the range of zero to n times the number of instances of entity
A plus m times the number of instances of entity B. The degree
of matching may be known for cloud migration scenarios but
rarely for any other application scenarios. Therefore, it is really
hard to calculate the expected storage overhead of the second
dimension. In general our approach will only then denormalize
1:n or n:m relationships if there is a JOIN query spanning
both entities. In that specific case, though, this overhead will
be identical for all schema options. Since our metric does not
calculate cardinal values but rather orders schema options on an
ordinal scale, the resulting order of schema options cannot be
affected by this second dimension. It is, hence, safe to ignore
the second dimension of the storage overhead metric.

3) Datastore-Specific Metrics: While the creation of schema
options is largely independent from the actual column store, the
performance of different operations (e.g., look-up via secondary
indexes) may vary between different column stores. Therefore,
we propose to also benchmark several performance numbers
of the column store and use these to influence the ranking of
schema options.

First, if the column store supports secondary indexes, it is
necessary to measure the performance differences of retrieving
rows based on their row key or the different secondary index
columns. Using this information, we can then calculate an
expected row retrieval performance for each query. Using the
frequency of each query as weights, this enables us to calculate
the weighted average of these performance numbers which will
be the expected read performance for read queries.

The actual performance may, of course, highly depend on
the size of the rows retrieved as well as the number of rows
in the table (e.g., in case of Cassandra the number of items
within one column family) and may also vary over time. Still,
it is highly unlikely that the order of these look-up options
(via row key or secondary indexes) varies between benchmark
and actual deployment later on. This implies that the ordering
of schema options will almost always be correct, i.e., while
the cardinal values may deviate, the ordinal scale will not be
violated. Obviously, the accuracy of the cardinal values depends
on the similarity between benchmark and actual deployment.
As an approximation, we can again use weights of one if the
frequency of queries is not known.

Second, we can benchmark the performance overhead of
reading an additional surplus column as a function of the
additional data size transferred over the network. Based on
this, we propose to calculate the performance overhead for
each read query which results from reading additional columns.
Using the frequency of the respective queries as weights again,
this can be used to calculate the weighted average performance
overhead of read queries. Obviously schema options where
less merges were possible in step 1c will rank better in this



dimension. As an approximation, we propose to replace this
metric by increasing the weight for storage overhead in the
overall scoring function instead.

4) A Simple Scoring Function: For our evaluation, we have
used a very simple scoring function as a heuristic which already
provides good recommendations (see section V). The discussed
metrics are likely to lead to the optimal schema but involve
a large information gathering and benchmarking effort, the
benefit of which might simply not be worth the effort. This
scoring function builds on two metrics:

Average number of secondary indexes used: This metric is
defined as the total number of secondary index columns, that
a given schema option uses, divided by the number of tables.
For this metric, lower values are better since row key-based
access is much faster in Cassandra than secondary index-based
look-ups16. For other systems, this may be different but is
unlikely to be so.

Average data duplication: This metric is defined as the total
number of columns of a schema option divided by the total
number of fields of the original entities. For this metric, lower
values are better since they imply a lower storage overhead as
well as fewer tables, i.e., less requests for write queries.

We have used the sum of both as a scoring function, i.e.,
schema options with a higher score are considered better.
Alternative scoring functions and metrics may lead to identical
or entirely different rankings – what is desirable, depends on
the use case and the preferences of the application developer.

D. Implementation

We have prototypically implemented our approach in Java.
For the schema creation phase, users have to specify the entities,
their fields, and relationships as well as the queries which
shall be considered. For the schema assessment phase, users
can specify to reuse any of the existing scoring functions.
Alternatively, they can subclass an abstract class to create
arbitrary scoring functions.

In its current version, our prototype fully automates all steps
apart from step 1e (see section III-B5) which is not too difficult
to do manually for the moment. We plan to publish the proof-
of-concept implementation as open source upon completion of
the implementation.

As a sidenote, we are also currently working on the
benchmarking middleware proposed in [21] for which we plan
to use this implementation within the mapper module.

IV. DISCUSSION

In this section, we discuss the impact of eventual consistency
as well as poor transactional guarantees on database schemas
designed either via our approach or the approaches of Mior [15]
and Vajk et al. [13], [14]. We also discuss limitations of our
approach.

A. Cost of Inconsistency and Poor Transactional Features

To our knowledge, there is no publicly available column
store that actually guarantees strict consistency or multi-key

16Based on extensive experimentation with Cassandra beforehand, we had
noticed that look-up via secondary indexes is by dimensions slower than row
key-based look-up.

transactions17. This means that every query, that is – during
execution – broken down into several requests to the storage
system, will be affected by the lack of transactional guarantees
and arising inconsistencies. In this section, we try to shed some
light on both influence factors.

The lack of multi-key transactions foremost means that the
application (or a middleware layer) is responsible for asserting
atomicity of all queries that require more than one request to
the datastore. If necessary, partial requests have to be retried
until they succeed as a rollback will typically be not feasible.
Furthermore, in the presence of concurrent write requests, any
query comprising more than one request may see an inconsistent
snapshot of the database due to missing isolation guarantees.

Basically, in read-optimized schemas, there are three types
of queries which may be broken down into multiple requests:
UPDATE or DELETE which use a look-up table to identify the
respective target records, INSERT queries which must update
several tables, and SELECT queries (potentially including a
JOIN) which read from more than one table.

UPDATE and DELETE queries may leave inconsistent data
if there are several concurrent requests to the same table. If
all identical queries with varying parameters are composed
of sub-requests that are executed in the same order, this is
highly unlikely to occur. In either case, it is desirable to
have as few tables as possible to reduce this risk. There is a
high probability that the conflict resolution mechanisms of the
underlying datastore can resolve the remaining inconsistencies
as long as the execution order of sub-requests is preserved.

Our approach cannot avoid these issues as we primarily
optimize for read performance. A scoring function emphasizing
low total numbers of tables, though, will help to select a schema
where this issue is unlikely to occur. In contrast, the approach of
Mior will not encounter any inconsistencies due to concurrent
executions of UPDATE and DELETE queries and the approach
by Vajk et al. seem to be affected more than ours as it will
result in a higher number of tables.

INSERT queries can only cause inconsistencies when their
sub-requests are not fully executed. So, as long as atomicity
is asserted via retries on the application-side, inconsistencies
are highly unlikely to occur in our approach or the one by
Vajk et al. Again, the approach of Mior will not encounter any
inconsistencies for these queries.

SELECT and JOIN queries which read from more than one
table at a time to aggregate the individual requests’ results into a
query result may show catastrophic consistency behavior. First,
these operations are bound to discover any inconsistencies
caused by write operations which is unavoidable. Second,
aggregated read results based on several requests will frequently
show dirty reads in the presence of writes. The main issue
here is that they may not only return stale data (which in
itself may be acceptable [22], [23]) but may also combine
different version snapshots of related entities. For instance, if
a query updates two tables in a certain order in parallel while
we read both tables in a different order, results may not only
be stale but entirely meaningless. The eventually consistent [7],
[8] guarantees of today’s column stores further aggravate this

17The Google App Engine datastore supports partial transactions within
small groups of rows, the so-called entity groups.



users tweets
n

n

n

n
1 n

user

follower

since

user

tweetId

text

time

followers

friends

user

password

user

friend

since

Fig. 2: Normalized Data Model of Twissandra

problem.

While our approach may encounter inconsistencies caused
by multi-request write queries, it is safe from encountering any
issues stemming from aggregating results of several distinct
read requests. The approaches by Mior or Vajk et al. can rarely
return usable results in read queries of realistic application
workloads since they are bound to read multiple tables.

In summary, we believe that our approach has the best
chance of dealing with inconsistencies in an appropriate way.

B. Limitations of our Approach

While our contributions offers important steps for an
informed database schema design for column stores and the
automation of that process, we can still identify two issues:

First, applications may change over time: New queries may
be added, existing ones may be changed or removed, the number
of entities and their respective fields may change, etc. As our
approach can only optimize for known queries, this may lead to
situations where our recommended schema is no longer a good
schema. Still, the flexible schema options of column stores
allow us to easily adapt the schema at a later time.

Second, column stores seem to resemble each other closely –
but only at first sight. They actually differ in crucial areas
which may affect the schema design: E.g., if the store supports
list columns, it may be more efficient to use two tables with
list columns instead of denormalizing an n:m relationship.
Also, column stores support different degrees of complexity in
WHERE clauses. Our approach currently assumes that the data
store supports the respective operator and that conditions are
only connected by logical ANDs. Logical ORs can be executed
by breaking the query into a sequence of queries. A general
solution to this problem is beyond the scope of this work.

V. EVALUATION

In this section, we show that our method and its prototypical
implementation produce correct results and are applicable
to realistic application scenarios. For this purpose, we use
Twissandra [5] – a sample application offering Twitter-like
functionality on top of Apache Cassandra – as use case.
Twissandra was also used as a use case by Vajk et al. [14]
and has been developed by the Cassandra community as a
reference implementation for the features of Cassandra. Since
this community can be deemed experts for column stores, this
scenario shall, therefore, illustrate that our automated approach
recommends solutions at least as good as a schema manually
developed by column store experts.

We start by describing the normalized data model which
Twissandra is based on. Next, we quickly recapitulate the
denormalization and its optimization described by Todorov [5].
Finally, we describe how we parameterized our proof-of-concept

Query ID Query

t1 SELECT * FROM tweets WHERE tweet_id=?
t2 SELECT tweets.time, tweets.tweet_id FROM users,

tweets WHERE users.user=? AND users.user =
tweets.user

t3 SELECT tweets.time, tweets.tweet_id FROM users,
tweets WHERE users.user=? AND users.user =
tweets.user AND tweets.time=?

t4 SELECT * FROM users WHERE user=?
t5 SELECT friends.friend FROM friends, users WHERE

users.user=? AND users.user = friends.user
t6 SELECT followers.follower FROM followers,

users WHERE users.user=? AND users.user =
followers.user

TABLE IV: Listing of Read Queries in Twissandra

friends

users

followers

tweets

n

1

1

n

1 n

Timelinen

1

user

follower

since

n

1

user

tweetId

text

user
tweetId time

userlinen

1 n

1

user tweetIdtime

user

password

user

friend

since

Fig. 3: Data Model of Twissandra

implementation which – at first try – recommended a schema
exactly identical to the solution developed by the Cassandra
community.

A. Normalized Data Model and Queries

Twissandra has four entities (see also figure 2): users, tweets,
friends, and followers. Each user can have several friends and
followers; he may also have posted an arbitrary number of
tweets. Table IV provides an overview of all read queries:
There are queries for selecting a tweet based on its ID (t1) as
well as for identifying tweet IDs based on either the author
(t2) or on the author and the respective time (t3). Other queries
retrieve user data based on the username (t4) or return follower
(t6) and friend (t5) data for a given user. Finally, there are write
queries which create or delete friends and followers, create
new users, or create a new tweet. These queries were identified
based on the publicly available implementation of Twissandra18.

B. Denormalization and Optimization

Todorov [5] describes that they partially denormalized this
data model in a first step to accommodate the two JOIN queries
which select tweet IDs based on either user (t2) or both user
and time (t3). For each of them, an additional table is created in
Cassandra: The userline which holds references to all queries
a particular user has posted and the timeline which holds
references to all tweets one’s followees have posted. Since the
tweet ID is a very small value, this introduces a negligible
storage overhead. See figure 3 for an overview of the proposed
schema.

Since every query to the userline or the timeline table is
inevitably followed by a query to retrieve the respective tweet
text (t1), it is possible to inline the tweets table into both
userline and timeline tables. This comes at a relatively high
cost in terms of storage overhead but approximately cuts read
latency for userline and timeline in half. This optimization is
shown in figure 4.

18github.com/twissandra/twissandra



friends

users

followers

n

1

1

n Timelinen

1

user

follower

since

text

user

time

userlinen

1

user

time

user password

user

friend

since

text

Fig. 4: Optimized Data Model of Twissandra

C. Comparison to our Approach

To evaluate our approach, we next parameterized our proof-
of-concept implementation with the normalized data model and
the original queries. We used the scoring function described
in section III-C4 mainly to demonstrate that already very little
information can be used to guarantee “good” recommendations.

The output of our tool were 128 total schema options
with the schema from figure 3 as the option with the highest
score. Originally, we had planned to run a system benchmark
comparing both the Twissandra schema and our recommended
schema and had even implemented a benchmarking tool for
this very purpose. Since our recommendation was identical to
the option chosen by Twissandra, we skipped these additional
experiments. Nevertheless, we would recommend to benchmark
at least the top five or top ten recommendations in practice.

As discussed above, there is the potential optimization of
inlining the tweets table into both the userline as well as the
timeline table. This is a good example where our assumption
of knowing all important queries a priori matters: When we
change the queries t2 and t3 so that they return “* FROM tweets”
instead of “tweet id FROM tweets” and remove the (no longer
needed) query t1 which retrieves tweets by their ID, then our
approach also recommends the optimized schema shown in
figure 4. We verified this with our prototypical implementation
where we made no further changes beyond these three affected
queries.

VI. CONCLUSION

Database schema design for RDBMS has been studied for
decades, for the much newer NoSQL column stores, though,
there is little work yet. Hence, application developers are more
or less left with their gut feeling. This problem does not only
occur during the development of new applications but also
whenever an existing RDBMS-based application is migrated to
a column store-based cloud service. To address this issue, we
have in this paper presented a systematic approach for informed
database schema design in column stores via automated schema
creation and application-specific schema ranking.

During the schema creation phase, our approach first creates
all feasible schema options which could answer a given set of
read queries with just a single read request each. Next, these
schema options are optimized by removing or merging surplus
tables according to a set of specified conditions. Finally, in
the ranking phase, the schema options are rated and ordered
using a custom scoring function. For this purpose, we have
developed and presented a set of metrics as well as a simple
scoring function. Finally, we have discussed how our approach
as well as alternatives from related work fare in the face of
inconsistencies and little or no transactional guarantees and
pointed out limitations of our approach.

We have implemented the schema creation and assessment
process to automate our approach. Then, to evaluate our
method, we have compared the Twissandra use case, which was
developed by proven column store experts, to the schema our
implementation recommends for the same use case; the result
was that our recommendation is identical to the one developed
in the Twissandra use case.

REFERENCES

[1] G. L. Sanders and S. Shin, “Denormalization effects on performance of
rdbms,” in HICSS 2001. IEEE, 2001.

[2] S. K. Shin and G. L. Sanders, “Denormalization strategies for data
retrieval from data warehouses,” Decision Support Systems, 2006.

[3] Z. Wei, J. Dejun, G. Pierre, C.-H. Chi, and M. van Steen, “Service-
oriented data denormalization for scalable web applications,” in WWW
2008. ACM, 2008, pp. 267–276.

[4] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A Survey of Large
Scale Data Management Approaches in Cloud Environments,” IEEE
Communications Surveys and Tutorials, vol. 13, 2011.

[5] L. Todorov, “Python driver overview using twissandra,” http://
planetcassandra.org/blog/python-driver-overview-using-twissandra (ac-
cessed Sept 1, 2014), 2014.

[6] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM TOCS, vol. 26, no. 2, pp. 1–26, 2008.

[7] D. Bermbach and J. Kuhlenkamp, “Consistency in distributed storage
systems: An overview of models, metrics and measurement approaches,”
in NETYS 2013. Springer, 2013.

[8] W. Vogels, “Eventually consistent,” Queue, vol. 6, October 2008.
[9] D. Bermbach, S. Sakr, and L. Zhao, “Towards comprehensive measure-

ment of consistency guarantees for cloud-hosted data storage services,”
in TPCTC 2013. Springer, 2013.

[10] D. Bermbach. and S. Tai, “Benchmarking eventual consistency: Lessons
learned from long-term experimental studies,” in IC2E 2014, 2014.

[11] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data consistency
properties and the trade offs in commercial cloud storages: the consumers’
perspective,” in CIDR 2011, vol. 11, 2011.

[12] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story,” Computer, 2012.

[13] T. Vajk, P. Feher, K. Fekete, and H. Charaf, “Denormalizing data into
schema-free databases,” in CogInfoCom 2013. IEEE, 2013, pp. 747–752.

[14] T. Vajk, L. Deák, K. Fekete, and G. Mezei, “Automatic nosql schema
development: A case study,” in PDCN 2013, vol. 2013.

[15] M. J. Mior, “Automated schema design for nosql databases,” in ACM
SIGMOD 2014 PhD Symposium, 2014.

[16] S. Scherzinger, E. C. De Almeida, F. Ickert, and M. D. Del Fabro, “On
the necessity of model checking nosql database schemas when building
saas applications,” in TTC 2013. ACM, 2013, pp. 1–6.

[17] A. S. Tanenbaum and M. V. Steen, Distributed Systems - Principles and
Paradigms, 2nd ed. Upper Saddle River, NJ: Pearson Education, 2007.

[18] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
replicated data types,” in SSS 2011. Springer, 2011, pp. 386–400.

[19] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS OSR, vol. 44, no. 2, pp. 35–40, 2010.

[20] J. Kuhlenkamp, M. Klems, and O. Röss, “Benchmarking scalability and
elasticity of distributed database systems,” PVLDB, vol. 7, no. 12, 2014.

[21] D. Bermbach, J. Kuhlenkamp, A. Dey, S. Sakr, and R. Nambiar, “Towards
an extensible middleware for database benchmarking,” in TPCTC 2014.
Springer, 2014.

[22] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh, “Consistency-based service level agreements for
cloud storage,” in ACM SOSP 2013.

[23] D. Bermbach, J. Kuhlenkamp, B. Derre, M. Klems, and S. Tai, “A
middleware guaranteeing client-centric consistency on top of eventually
consistent datastores,” in IC2E 2013. IEEE, 2013.


