
Evidence-Based Security Configurations for
Cloud Datastores

Frank Pallas, David Bermbach, Steffen Müller, Stefan Tai
TU Berlin

Information Systems Engineering Research Group
Einsteinufer 17

10587 Berlin, Germany
{fp, db, sm, st}@ise.tu-berlin.de

ABSTRACT
Cloud systems offer a diversity of security mechanisms with
potentially complex configuration options. So far, security
engineering has focused on achievable security levels, but not
on the costs associated with a specific security mechanism
and its configuration. Through a series of experiments with
a variety of cloud datastores conducted over the last years,
we gained substantial knowledge on how one desired quality
like security can have a significant impact on other system
qualities like performance. In this paper, we report on se-
lect findings related to security-performance trade-offs for
three prominent cloud datastores, focusing on data in transit
encryption, and propose a simple, structured approach for
making trade-off decisions based on factual evidence gained
through experimentation. Our approach allows to rationally
reason about security trade-offs.

CCS Concepts
•Information systems → Cloud based storage; Paral-
lel and distributed DBMSs; Database performance evaluation;
•Security and privacy → Distributed systems secu-
rity; Database and storage security;

Keywords
Cloud storage, data in transit security, security configura-
tions, performance benchmarking, trade-offs

1. INTRODUCTION
Cloud storage services and systems (cloud datastores) are
core building blocks of modern distributed systems. Explic-
itly designed for maximizing performance, elastic scalability,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permis-
sions@acm.org.
SAC 2017, April 03 - 07, 2017, Marrakech, Morocco
Copyright held by the owner/author(s). Publication rights licensed to
ACM. 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/10.1145/3019612.3019654

and availability at the same time, they are a cornerstone of
big data applications and the technological basis for today’s
largest Internet platforms and most innovative startups alike.

Like any other component of a distributed system operated
in potentially hostile environments and interconnected across
untrustworthy channels, cloud datastores must be appropri-
ately protected against unauthorized access and manipulation
to reduce business risks or simply to achieve regulatory com-
pliance and thus practical applicability at all (e.g. when
personally identifiable information is stored and processed).
In particular, this refers to data flowing to and from an
application’s storage backend operated in the cloud. Cloud
datastores therefore offer different mechanisms for data in
transit encryption.

However, any security measure comes with costs attached,
particularly in the form of impacts on usability, achievable
productivity, system performance, or even realizable func-
tionality. Due to these costs, not any measure that heightens
security is advisable to be employed. Instead, any achievable
gain in security (or, respectively, reduction of risk) must
be weighed against the detrimental impacts before using a
certain security measure. Furthermore, security measures
can typically be used in a variety of different configurations
(e.g., different key-lengths used for traffic encryption) which,
in turn, result in differently severe impacts on other system
qualities. The choice of a certain security configuration must
therefore also be subject to a conscious weighing between the
achieved security level and the adverse effects that have to
be accepted. Striving for maximum security will only rarely
be a rational outcome of such trade-offs.

In the context of cloud datastores, the choice of a security
mechanism and its concrete configuration primarily has to
trade-off security aspects against performance-related system
qualities like achievable throughhput and latency.1 Mak-
ing a reasonable trade-off decision, then, requires reliable
knowledge about the actual impact that particular security
mechanisms and configurations have in these regards. Unfor-
tunately, such knowledge does often not exist.

In lack of reliable knowledge about the actual impact of
security mechanisms and their different configuration op-
tions on other system qualities, however, managing respec-

1However, secondary effects on system qualities like data
consistency must be kept in mind, too. See below for a
slightly more detailed discussion.

424

tive trade-offs rationally becomes impossible. In practice,
security-related configuration decisions are therefore typi-
cally made on the basis of so-called “best practices”, security
practicioners’ experience and intuition, and rather stochas-
tic ad-hoc considerations, obviously leading to suboptimal
outcomes.

Over the last years, we conducted a large number of exper-
iments with a diversity of cloud systems and in particular
with cloud datastores, to experimentally study system qual-
ity trade-offs [6–10, 12, 22, 23]. In this paper, we report on
select findings related to security-performance trade-offs for
three prominent cloud datastores, focusing on data in transit
encryption, and propose a simple, structured approach for
making trade-off decisions based on factual evidence gained
through experimentation.2

Starting with a brief summary of relevant background and
related work in section 2, our approach is presented in section
3. In section 4, we then present results gathered for three
widely used cloud datastores (Amazon DynamoDB, Apache
Cassandra, Apache HBase) following this approach before
concluding in section 5.

2. BACKGROUND AND RELATED WORK
On the one hand, our considerations rest upon research on
the need for making rational (instead of gut-level) trade-offs
between conflicting system properties in the field of informa-
tion security and on existing, mostly theoretical approaches
for doing so. On the other hand, we also draw upon existing,
evidence-based approaches to making trade-offs between con-
flicting quality characteristics in modern distributed systems
engineering in general, particularly with regard to the storage
backend. Both strands shall be briefly outlined:

2.1 Trade-Offs for Security-Related Configu-
rations

In the field of information security, the need for making trade-
offs between different system qualities is omnipresent. As the
choice of security measures and their configuration often also
affects non-security factors, respective impacts must therefore
be factored into security-related decisions on system design
and configuration. Furthermore, different goals of security
itself – like, for example, confidentiality and availability in the
case of data encryption – must often be traded off against
each other and even different configurations of the same
security mechanism can have significantly different impacts.
In this light, making trade-offs in practice has for a long
time mostly been perceived as an art rather than a truly
rationalizable process [13].

During the past years, however, intentions for a more rational
practice of making security-related trade-offs have gained
momentum. Especially the research domain of information
security economics [2, 26] played a particular role in this
regard. Amongst others, approaches have been proposed
for trading off between organizational security policies and

2Other security mechanisms aimed at different attack vectors
(data at rest encryption, logging, etc.) are beyond the scope
of this paper but can basically also be analyzed following the
approach presented herein.

employee productivity [4,5], for optimizing software patching
practices [20], or for aligning configurations of partially inter-
dependent security measures [15]. While theoretical models
have reached notable maturity, however, one of the most
severe obstacles for rational decisionmaking in the field of
security is still a lack of reliable empirical evidence and of
approaches for gathering such evidence (see also [14]).

Any approach trying to counteract this lack – and thus to fos-
ter more rational security configuration trade-offs – must pay
regard to the multitude of security parameters potentially
relevant in a given setting, their manifold and often indi-
rect impacts on other system qualities (see below), and the
diverse dependencies on factors like the typical application
load or the employed infrastructure. A purely theoretical,
model-driven approach will hardly be able to cover all these
(often unknown) interdependencies. Similarly, quantitative
measurements will also not suffice to encompass all rele-
vant factors and interdependencies, including non-security
qualities.

Instead, we herein thus propose an experiment-driven ap-
proach to optimizing security-related configuration trade-offs
which strongly rests upon established concepts for evidence-
based trade-offs in the design and configuration of distributed
storage systems in general.

2.2 Evidence-Based Trade-Offs in Distributed
Storage Systems

Making trade-offs to optimize different, conflicting system
qualities against each other in the light of given application
requirements is a philosophy inherent to most modern cloud
datastores. In order to maximize performance, elastic scala-
bility, and availability at the same time, for example, cloud
datastores typically relax other quality properties like con-
sistency [18]. In contrast to traditional, relational database
systems, cloud datastores therefore often do not provide
strict consistency guarantees but instead only ensure “even-
tual consistency” [25]. While this concept facilitates better
performance, scalability, and availability, it entails disadvan-
tages in matters of data staleness (i.e., the risk of reading
outdated data from a node that did not yet receive a certain
update) and ordering (e.g., two replicas may execute two up-
dates in a different order, thus, leading to conflicts). Trading
off these concistency-related properties against performance-
and availability-related ones can then be done through the
choice of replication-related configuration parameters, de-
pending on the concrete requirements of the overall system
or application to be built [6].

However, the trade-off between consistency and availabil-
ity on the one hand and between consistency and latency
on the other hand [1], are not the only trade-offs in (dis-
tributed) datastores. There are also trade-offs between avail-
able transactional features (mainly isolation guarantees) and
performance or trade-offs between durability and perfor-
mance (keeping things in memory vs. instantly persisting
changes to disk). Furthermore, in such a situation with a
multitude of trade-offs, there are also indirect, transitive
trade-off relationships between qualities [6]. For instance,
an increased security level could be countered by relaxed
consistency settings to keep the performance level constant.

425

Typically, these quality levels are not strict guarantees but
rather a system behavior that is caused by a combination of
application workload and particular settings. For example,
setting a consistency level in Cassandra [21] to QUORUM
will result in some undefined staleness and ordering behavior
which furthermore highly depends on the incoming applica-
tion workload, e.g., a read-only workload will never encounter
any inconsistencies and a write-only workload will never see
its resulting inconsistencies.

The only way to gain reliable information on resulting qual-
ity levels is thus through benchmarking experiments – the
resulting knowledge in turn is the necessary requirement for
making informed trade-off decisions.

3. BENCHMARKING SECURITY CONFIG-
URATIONS

In this section, we will give an overview of how we typically
gained our experiment results in the past. For this purpose,
we first sketch-out our benchmarking approach before briefly
discussing resulting limitations and disadvantages.

3.1 Benchmarking Approach
In benchmarking, we aim to gather reliable and relevant
evidence for making security configuration trade-offs while
reducing experimental efforts as far as possible. For this
purpose, we propose the following 6-step process, which we
have continuously refined through a large number of past
experiments. While these steps seem straightforward and
somewhat trivial, they are – as experience shows – not.
In benchmarking, so many things can go wrong that not
following a systematic approach seems courageous at best.

1) Relevant security parameters and trade-offs: In a
first step, we identify all parameters and their configuration
options, i.e., groups of security configurations, that are sub-
ject to the trade-off of interest. We also determine which
system qualities beyond the desired security levels these pa-
rameters are likely to affect. However, even parameters and
system qualities that – analytically – seem to be isolated
should not be neglected as unforeseen effects always have
a certain likelihood through complex interdependencies in
modern distributed systems.

2) Reduction of the parameter design space: Building
on the potentially large parameter space from step 1, we
identify hard constraints based on the intended application
domain, e.g., corporate policies or relevant regulatory re-
quirements that disallow or require specific cipher suites in
TLS. Configurations not meeting these criteria can then be
disregarded as irrelevant, thus, effectively reducing the design
space of potential options. To further reduce benchmarking
efforts, we compare the still available options and disregard
options that either seem unlikely to have an effect or that
will have a very predictable impact. For this, we build on
experiences from past experiments but also resort to plain
analysis. While this helps to reduce efforts and, thus, cost
of benchmarking, it always comes with the risk of missing
entirely unexpected behavior.

3) Preference ordering: While it is hard to quantify a
level of security for a given configuration on a cardinal scale,

this is – at least for the context of cloud datastores – typically
less difficult on an ordinal scale. By doing so, we compile
a strict preference order of different configurations from a
security perspective. Afterwards, we take the opposite point
of view: Based on the pre-identified quality trade-offs (which,
notably, might also be incomplete), we identify a similarly
ordered scale for non-security properties like performance,
data staleness, etc. (see above).

4) Experiment planning: As opposed to security, most
relevant non-security qualities of cloud datastores can be
measured experimentally. For doing this in a way meaningful
to the intended application context, we have to identify typi-
cal interaction patterns between applications and datastores.
All configuration options identified in step 2 then have to
be analyzed experimentally. For this purpose, we resort to
established benchmarking approaches for cloud datastores,
e.g., [17], or develop a new one if there is no feasible option.
For the benchmarks themselves, it is of utmost importance
that the workload, i.e., the way in which the benchmark-
ing tool creates stress on the system, is as close to the real
application workload as possible. The more it resembles
the application workload, the more are results meaningful
through accurate prediction of expected quality levels.

5) Experiment execution: In the actual experiment phase,
we run exactly the same benchmark against the cloud datas-
tore once per configuration setting. This allows us to identify
the actual impact that a security configuration has on other
qualities, e.g., performance or data staleness, which are in a
direct or indirect trade-off relationship to security. Typically,
this will lead to a large number of experiments which we
additionally repeat several times to ensure repeatability but
also to study stableness of our results. Obviously, this is only
feasible if the experiments are at least semi-automated to
require as little human intervention as possible.

6) Result analysis: Finally, in the analysis phase, we
carefully weigh different security configuration options with
regards to their security guarantees and their experimentally
determined impact on other qualities to make rational trade-
off decisions. Typically, the final recommendation will be
a “middle” solution. However, as we will see in section 4.1,
sometimes experiments also show that security may come for
free – at least for the user of the cloud datastore – and that
maximum security can be a perfectly rational decision, too.

3.2 Discussion
The approach presented above may seem tedious and time-
consuming, even though careful consideration of key parame-
ters can be used to reduce the time and cost effort. However,
results are priceless: Depending on whether the “gut feeling”
decision would have been in favor of (typically) performance
or security, cloud application developers can either gain ad-
ditional security guarantees at very little or no additional
performance impacts or they can gain significant performance
improvements by disregarding rare or only theoretical threats
while still meeting mandatory security requirements. Also,
as we will see below, such results may also suggest to recon-
sider the entire security subsystem of cloud datastores due to
catastrophic performance impacts, even compared to other
cloud datastores.

426

Obviously, our approach still depends on a certain level of
experience and does not work “automatically and out of the
box”. In particular, step 2 and – to a certain extent – step 1
are not fully operationalizable if the resulting parameter space
should be meaningful and sufficiently small to experiment
with. Also, the preference ordering in step 3 will typically not
be fully deterministic for a given setting because of all too
often rather tacit than explicit preferences. Nonetheless, our
approach still strongly reduces the need for “gut feelings” and
paves the way for significantly more rational and structured
security configuration trade-offs.

Another issue is the expected lifetime of benchmarking results,
i.e., the period of time until measurement results will have
become obsolete. Generally, experiments become obsolete
after a while if either software or hardware updates are made
to the deployment platform, i.e., results for an on-premise
datastore where neither software nor hardware are changed
will remain relevant. For this, we need to distinguish a cloud
datastore service like Amazon DynamoDB and a self-hosted
cloud datastore system like Apache Cassandra deployed on
a compute cloud. In case of cloud services, changes to soft-
ware and hardware will be frequent and results will therefore
become obsolete very fast. However, at the same time such
services offer only very limited security configuration options
so that repeating experiments is relatively inexpensive. For
a self-hosted cloud datastore, in contrast, there are much
more configuration parameters so that experiments can be
time-consuming and expensive. However, here the applica-
tion developer has a much higher degree of control over the
deployed system stack: software is only updated explicitly
by the application developer, i.e., he can also decide to not
update, and underlying hardware is updated rarely.

Still, the probability of the benchmarking results being obso-
lete should be carefully weighed against the costs and efforts
of rerunning the experiments. Fortunately, applications are
bound to notice performance changes through monitoring.
This may provide an indicator for the point in time when
changes have been made: while monitoring results are sta-
ble, the current configuration may no longer be the “best”
option, but it will not be worse than at the time when it was
selected.

4. EXEMPLARY CASE STUDIES
To illuminate the benefit of such experimentally gathered evi-
dence, we present three case-studies focusing on three widely
used cloud datastores below: Amazon’s provider-maintained
DynamoDB service, Apache Cassandra, and Apache HBase.
For each case study, the considered cloud datastore is briefly
introduced, followed by an outline of the available mecha-
nisms for achieving data in transit encryption and the respec-
tive configuration options available. Based on this, we then
describe the experiments we conducted and present selected
results. As the main focus of this paper is on the general
approach of evidence-based security trade-offs, we mainly re-
fer to results for maximum throughput achieved for a mixed
read-/write-workload here and also abstain from elaborating
on in-depth details of the experiment settings. However, all
experiments were conducted in accordance with benchmark-
ing best practices [11], e.g., ensuring that the measurement
client did not become a bottleneck in the experiment.

4.1 Amazon DynamoDB – Free Lunch
DynamoDB is a managed cloud datastore provided by Ama-
zon as part of the AWS ecosystem. It is explicitly designed
for handling large amounts of data and for providing high
throughput in writing and accessing these data. As a man-
aged service, DynamoDB is procured on the basis of a
given throughput to be provided and scales automatically to
achieve this throughput.

Data in transit encryption for DynamoDB is realized by
means of TLS-based HTTPS connections. Generally speak-
ing, TLS can be operated in a multitude of different configu-
rations (protocol version, key-length, operation mode, etc.)
which are negotiated during connection handshake and which
carry different computational efforts on the client as well as
the service side. Without significant tweaks on the client
side implementation, however, DynamoDB only allows to
either use TLS or not, with concrete configurations varying
across regions and over time.3 In practice, security engineers
thus primarily have to decide whether to use data in transit
encryption or not when using DynamoDB. By changing the
employed region, however, even different TLS configurations
may be chosen indirectly.

As outlined above, making a rational trade-off between these
options must weigh the resulting security level against the
respectively achievable performance. Following former exper-
iments with a comparably weak TLS configuration4 [22], we
thus conducted experiments for DynamoDB operated in an
AWS region that provides reasonable TLS security5 and com-
pared a configuration with data in transit encryption turned
on to one without. In all these experiments, we benchmarked
throughput, read latency and write latency.

In none of these dimensions, however, we observed statisti-
cally significant deviations and thus any performance impact
of using TLS-protected communication at all, neither for the
previously benchmarked, rather insecure configuration nor
for the current setting with reasonable security (see figure
1). Leaving aside an increased computational load on the
client side, Amazon is thus shouldering the whole bill of
provider-side computational overhead and DynamoDB pro-
vides the provisioned throughput independently from data
in transit encryption turned on or not. At least in matters of
storage-side performance, there is thus no reason to abstain
from data in transit encryption at all or to choose a less
secure configuration for performance-related reasons. With-
out the evidence provided by our experiments, intuitively
made trade-offs would presumably have come to different
conclusions for a multitude of “not so critical” cases.

4.2 Apache Cassandra – It’s in the Details
Apache Cassandra is a highly scalable and fault-tolerant
distributed datastore often used in distributed systems with
large datasets. A common use-case is to deploy a Cassan-
dra cluster on cloud compute instances (like, e.g., Amazon

3At the time of our experiments, for example, AWS
Ireland used TLS RSA WITH AES 128 CBC SHA, while
AWS Germany offered significantly higher security with
TLS ECDHE WITH AES 256 GCM SHA384.
4SSL RSA WITH RC4 128 MD5
5TLS RSA WITH AES 128 CBC SHA.

427

0

1000

2000

3000

4000

5000

0 200 400 600 800

No+Security
TLS+(AES+128+CBC)

Th
ro
ug
hp
ut
+[o
ps
/s
]

Time+[s]

Figure 1: Experimentally determined throughput
impact of TLS encryption for DynamoDB

EC2 instances) and to scale the number of instances accord-
ing to dynamically fluctuating loads. Due to this model of
self-operation, any encryption overhead has to be borne by
the user of a Cassandra-cluster – either in the form of re-
duced performance or through increased costs for procuring
additional instances to achieve similar performance.

Data in transit encryption is realized through TLS in Cassan-
dra. As Cassandra is typically self-operated, available TLS
configurations are not restricted to a small, pre-selected set
of combinations but just limited by the TLS implementation
used on the client- and the server-side. Any user of a self-
deployed Cassandra cluster will thus have to make rational
choices for such diverse parameters as the protocol version,
the protocol to be used in the handshake phase, the algo-
rithm to be used for bulk data encryption together with its
keylength and operation mode, or the used Hash algorithm.

Furthermore, the hardware-software-stack that Cassandra is
deployed on can play a significant role for the performance
impact of a given configuration: If it allows to utilize cryp-
tographic hardware extensions like AES-NI, the expectable
performance overhead of supported encryption algorithms is
significantly lower than for stacks with purely software-based
encryption. Besides, the used JVM may also influence the
performance impact resulting from certain configurations
because of the different TLS implementations.

Finally, a self-operated, distributed datastore like Cassan-
dra requires to consider data in transit encryption for both,
external communication with client applications (application-
replica communication, AR) and cluster-internal communica-
tion between different nodes (replica-replica communication,
RR). Depending on the concrete deployment, it might, for
example, be perfectly reasonable to abstain from protect-
ing cluster-internal traffic in exchange for a rather small
performance gain as long as internal traffic is appropriately
protected by other means (e.g. a virtual private cloud).

Even after sorting out cipher suites with insufficient security
or only marginal adoption (esp. RC4-, MD5- or ChaCha20-
based combinations) according to step 2 of our approach, a
security engineer is thus still confronted with an overly broad
set of potential configurations to be evaluated. Following step
2 of our approach even further, we thus narrowed down our
experiments to a subset of cipher suites with reasonable pa-

10327,3

8260 7857
7124 7157

0

2000

4000

6000

8000

10000

12000

Baseline23 No2TLS AES22562CBC AES22562GCM

AES3NI2enabled
AES3NI2disabled

A
vg
.2T
hr
ou
gh
pu
t2[
op
s/
s]

Figure 2: Throughput impact of AES operation
mode and AES-NI hardware support for a TLS-
protected Cassandra cluster with 3 nodes

rameter combinations. Of the still extensive experiments we
conducted, we only report on two parameters here: The oper-
ation mode of AES, where we tested “Cipher Block Chaining
(CBC)” against “Galois/Counter Mode (GCM)”, and the
availability of AES-NI extensions for hardware-supported
encryption.

For a cluster of 3 nodes deployed on Amazon EC2 (m1.large)
with only external (application-replica) communication pro-
tected by TLS, we observed significant performance differ-
ences resulting from different settings of these parameters
(see figure 2): Compared to the baseline with no encryp-
tion enabled, the configuration with 256 bit AES led to a
nearly similar 31% performance decrease for both opera-
tion modes with AES-NI deactivated.6 Given that GCM is
usually deemed more secure than CBC (see step 3 of our
approach), this suggests it to be preferred in any case. With
AES-NI hardware extensions available, however, CBC led to
a performance drop of 20% while GCM produced an over-
head of 24% – Depending on the concrete use case, this
might be a reason for preferring CBC over GCM. Besides
highlighting the impact of available hardware extensions for
the achievable performance in general, this also illuminates
how different configuration parameters may interrelate in
this regard.

With cluster-internal (replica-replica) encryption also acti-
vated, the performance impact of encryption was slightly
higher without hardware support (around 33% for both op-
eration modes as compared to no encryption at all), while
the activation of AES-NI had only marginal or even no sig-
nificant effect (30% for CBC and still 32% for GCM). Again,
this demonstrates the manifold interdependencies between
different configuration parameters and the resulting need for
carefully benchmarking different configurations.

4.3 Apache HBase – Be Prepared
HBase is another distributed datastore that is often self-
deployed on multiple compute cloud instances as the stor-
age backend of large distributed systems and applications.7

6GCM performed only marginally better than CBC.
7There are, however, also different offerings for provider-
maintained HBase deployments that can be used “as a ser-

428

HBase and the underlying HDFS originally were reimplemen-
tations of the Google storage stack comprising BigTable [16]
and GFS [19]. As HBase is a core component of the Hadoop
ecosystem, it is widely used in the big data domain.

Different from DynamoDB and Cassandra, data in transit
encryption is not done through TLS connections in HBase but
rather employs separate encryption mechanisms embedded
into native protocols.8 In particular, we have to distinguish
between an “HBase layer” with communication based on
HBase RPC and an underlying “HDFS layer” encompassing
Hadoop RPC and the HDFS data transfer protocol. External
communication is only realized on the HBase layer while
inter-node communication comprises both, HBase and HDFS
layer.

For these two layers, data in transit encryption can be acti-
vated and configured separately [24, p. 209-210]. Activating
encryption for external communication on the HBase layer,
in turn, automatically enables HBase-internal encryption in
this layer, too. Assuming a distributed HBase deployment in
a public cloud, security engineers will typically have to decide
whether to activate each of these mechanisms. The perfor-
mance decrease to be expected – and thus to be factored into
the respective trade-off decision – is suggested to be around
10% by the official HBase documentation [3, section 58.3].

To verify this magnitude, we benchmarked an HBase cluster
with 6 data nodes deployed on Amazon EC2 (m4.large) in two
different configurations first: No data in transit encryption
enabled and data in transit encryption enabled on both
layers. As it can be seen from figure 3, results were much
worse than expected according to the official documentation.
Instead of 10%, we actually observed an overall throughput
decrease of 47%. For a cluster with 3 data nodes, however,
we got a performance decrease of only 7% while for 12 data
nodes, throughput dropped by 37% [23]. Especially for
larger, more realistic cluster sizes, the actual impact observed
through our experiments is thus way beyond what the official
documentation suggests.

Again, this illuminates the importance of experimentally
gathered evidence for making rational security-related trade-
offs: While a performance decrease of 10% might be deemed
a reasonable price for securing some less-critical business data
against eavesdropping, for example, a decrease of 47% (or,
vice versa, a rise of costs by up to 90% for achieving similar
performance with a respectively increased cluster size) will
certainly lead to significantly different trade-off decisions.

In subsequent experiments with different cluster sizes and
instance types, these results basically held true. Through
benchmarking additional configurations, we were further-
more able to attribute the largest share of the performance
impact (between 66 and 80%) to the HBase- and not to the
HDFS layer. Besides fostering better-founded configuration
decisions, our approach thus also provides a clear indication
for a careful re-examination of respective implementation
parts within HBase’s security subsystem.

vice”.
8The details of the HBase security subsystem are quite com-
plex and don’t matter much here. Most importantly, however,
it heavily employs Kerberos and Java’s Simple Authentica-
tion and Security Layer (SASL).

0

5000

10000

15000

20000

25000

0 200 400 600 800

No*Security
HBase*Native*Security

Th
ro
ug
hp
ut
*[o
ps
/s
]

Time*[s]

Figure 3: Experimentally determined throughput
impact of HBase wire encryption for a cluster with
6 data nodes

5. CONCLUSION
Today’s cloud systems offer a diversity of security mecha-
nisms, each with potentially complex configuration options.
So far, research on security engineering has focused on achiev-
able security levels, but not on the costs associated with a
specific security mechanism and its configuration. Perfor-
mance engineering, on the other hand, typically opts for
the fastest (but often weakest) security configuration – for
instance, until a few years ago even online banking sites used
RC4-based SSL cipher suites. However, in most scenarios a
“middle ground” would be the best option for an application
developer: cloud systems that offer reasonable performance
while ignoring exotic or theoretical threats. Identifying such
a middle solution, however, requires detailed knowledge on
the impacts that specific security configurations have on
other qualities such as performance or data consistency.

Through a series of experiments with a variety of cloud data-
stores conducted over the last years, we gained substantial
knowledge on how one desired quality like security can have
a significant impact on other system qualities like perfor-
mance. Building on these experiences, we proposed in this
paper a simple, structured approach for making trade-off
decisions based on factual evidence gained through experi-
mentation. Our approach allows to rationally reason about
security trade-offs. Using this approach, we then reported
on select findings related to security-performance trade-offs
for three prominent cloud datastores, focusing on data in
transit encryption. We showed that, depending on the cloud
datastore in question, enabling security may have severe
impacts in all setups or only for specific configurations and
deployments. We also showed that security may, in fact,
come for “free” – at least for the cloud user.

In future work, we plan to work on adaptive communication
middleware systems that automatically change security con-
figurations of systems such as Apache Cassandra based on
their current state to meet both performance and security
goals. Furthermore, we intend to apply our approach to other
security measures beyond data in transit encryption and to
examine their interdependent impact on non-security system
properties such as performance but also data consistency.

429

Acknowledgments
The authors would like to thank Amazon Web Services who
provided research grants for the experiments.

6. REFERENCES
[1] D. Abadi. Consistency tradeoffs in modern distributed

database system design: CAP is only part of the story.
IEEE Computer, 45(2):37–42, 2012.

[2] R. Anderson and T. Moore. The economics of
information security. Science, 314(5799):610–613, 2006.

[3] Apache Software Foundation. Apache HBase reference
guide, 2016. https://hbase.apache.org/book.html#
security.example.config.

[4] A. Beautement, S. Parkin, I. Becker, K. Krol, and
A. Sasse. Productive security: A scalable methodology
for analysing employee security behaviours. In 12th
Symposium on Usable Privacy and Security (SOUPS),
2016.

[5] A. Beautement, M. A. Sasse, and M. Wonham. The
compliance budget: Managing security behaviour in
organisations. In Proceedings of the workshop on ew
security paradigms (NSPW), pages 47–58. ACM, 2009.

[6] D. Bermbach. Benchmarking Eventually Consistent
Distributed Storage Systems. PhD thesis, Karlsruhe
Institute of Technology, 2014.

[7] D. Bermbach, J. Kuhlenkamp, B. Derre, M. Klems, and
S. Tai. A middleware guaranteeing client-centric
consistency on top of eventually consistent datastores.
In Proceedings of the 1st International Conference on
Cloud Engineering (IC2E), pages 114–123. IEEE, 2013.

[8] D. Bermbach and S. Tai. Eventual consistency: How
soon is eventual? An evaluation of amazon s3’s
consistency behavior. In Proceedings of the 6th
Workshop on Middleware for Service Oriented
Computing (MW4SOC), MW4SOC ’11, pages 1:1–1:6.
ACM, 2011.

[9] D. Bermbach and S. Tai. Benchmarking eventual
consistency: Lessons learned from long-term
experimental studies. In Proceedings of the 2nd
International Conference on Cloud Engineering (IC2E),
pages 47–56. IEEE, 2014.

[10] D. Bermbach and E. Wittern. Benchmarking web api
quality. In Proceedings of the 16th International
Conference on Web Engineering (ICWE), pages
188–206. Springer, 2016.

[11] D. Bermbach, E. Wittern, and S. Tai. Cloud Service
Benchmarking. Springer, 2017.

[12] D. Bermbach, L. Zhao, and S. Sakr. Towards
comprehensive measurement of consistency guarantees
for cloud-hosted data storage services. In R. Nambiar
and M. Poess, editors, Performance Characterization
and Benchmarking, volume 8391 of Lecture Notes in
Computer Science, pages 32–47. Springer, 2014.

[13] F. Bjorck. Institutional theory: A new perspective for
research into is/it security in organisations. In
Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS), 2004.

[14] R. Böhme. Security metrics and security investment
models. In International Workshop on Security

(IWSEC), pages 10–24. Springer, 2010.

[15] H. Cavusoglu, S. Raghunathan, and H. Cavusoglu.
Configuration of and interaction between information
security technologies: The case of firewalls and
intrusion detection systems. Information Systems
Research, 20(2):198–217, 2009.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation
(OSDI), OSDI ’06, pages 205–218, Berkeley, CA, USA,
2006. USENIX Association.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with YCSB. In Proceedings of the 1st Symposium on
Cloud Computing (SOCC), pages 143–154. ACM, 2010.

[18] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store. In
Proceedings of 21st Symposium on Operating Systems
Principles (SOSP), pages 205–220. ACM, 2007.

[19] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. In Proceedings of the 19th Symposium on
Operating Systems Principles (SOSP), SOSP ’03, pages
29–43, New York, NY, USA, 2003. ACM.

[20] C. Ioannidis, D. Pym, and J. Williams. Information
security trade-offs and optimal patching policies.
European Journal of Operational Research, 216(2):434 –
444, 2012.

[21] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. SIGOPS Operating Systems
Review, 44(2):35–40, 2010.

[22] S. Müller, D. Bermbach, S. Tai, and F. Pallas.
Benchmarking the performance impact of transport
layer security in cloud database systems. In Proceedings
of the 2nd International Conference on Cloud
Engineering (IC2E), pages 27–36. IEEE, 2014.

[23] F. Pallas, J. Günther, and D. Bermbach. Pick your
choice in HBase: Security or performance. In
Proceedings of the 2016 IEEE International Conference
on Big Data (BigData 2016). IEEE, 2016.

[24] B. Spivey and J. Echeverria. Hadoop Security -
Protecting Your Big Data Platform. O’Reilly, 2015.

[25] W. Vogels. Eventually consistent. ACM Queue,
6(6):14–19, Oct. 2008.

[26] WEIS. Workshop on the economics of information
security. http://econinfosec.org/.

430

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20170118110126
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

