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Abstract—When processing IoT data on a large scale, the cloud
is no longer sufficient and it has been proposed to move parts
of the computation closer to the IoT devices – the so-called
fog computing. There are also three basic processing paradigms
today that lend themselves to IoT data processing: stream and
batch processing as well as serverless functions. Where to place
which part of the data processing and which processing paradigm
to choose, however, is often unclear.

In this paper, we give an overview of all three paradigms as
well as different data processing use-cases. We use these to derive
a decision framework which provides general guidelines for
placement of processing and the respectively suitable paradigm
when designing a large-scale IoT data processing architecture.

Index Terms—IoT, Fog Computing, Edge Computing, Cloud
Computing, Data Analytics, Event Processing

I. INTRODUCTION

With the ever increasing number of connected Internet of
Things (IoT) devices, traditional data processing approaches
in the cloud are no longer feasible in many scenarios. The
reason for this lies mainly in bandwidth limitations and latency
requirements but additional concerns such as privacy are often
also not compatible with cloud-based data processing. Instead,
it has been suggested that some data processing should be
physically moved closer to these devices in edge and fog
computing, or even to the device itself [1]–[3].

However, with a more flexible and distributed infrastructure,
it can be hard to decide where and how precisely data should
be processed. The vast number of data processing frameworks
with varying feature sets and different target use-cases makes
such decisions even harder. Therefore, one will typically
face two main questions when designing the data processing
pipeline for an IoT system: First, there is the decision of
where to process which data. For example, data could be
filtered on the device, aggregated on the edge, transformed
in the fog and ultimately aggregated again in the cloud. Or
the edge just relays the data from the device to a specific
fog node without any additional transformation. Second, a
decision has to be made about the system or service to be
used at each step. In our case, the decision between functions
of a FaaS platform, stream processing, and batch processing
is of particular interest. When deciding on a concrete system,
the fact that not all processing tools are available everywhere
needs to be considered, e.g., AWS Lambda1 is only available
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in the cloud as it is provided as a service.
Our goal with this paper is to help in how to decide which

data processing tool or service to use and where to place it
in larger Internet of Things systems. Of course, we cannot
provide a general architecture that can be applied to every
problem, but we will try to provide a framework to make these
decisions when designing an IoT data processing pipeline. In
our framework, we have divided data processing use-cases into
event processing and data analytics. For both types, we present
the pros and cons of placing components at specific locations
within the edge, fog and cloud and give pointers on when to
use stream processors, functions, or batch processing.

In this paper, we will first give a brief introduction to
IoT architectures, IoT data, and data processing approaches
(section II). Based on this, we will then introduce and explain
our decision frameworks for event processing (section III) and
data analytics (section IV). Finally, we will discuss related
work (section V) and come to a conclusion (section VI).

II. BACKGROUND

In this section, we will first discuss properties of IoT data,
then give an overview of edge and fog computing, and finally
describe the three data processing paradigms.

A. Characteristics of IoT Data Processing

IoT data is generated by IoT devices such as sensors,
actuators, video cameras, connected cars, and others [4]. And
as devices are so diverse, the data they produce is generally not
bound to a common structure – a video recording for example
is very different from a single measurement by a sensor.
However, these devices all have in common that their data is
bound to a particular point in time and measured at a specific
physical location, whether that location is variable or not. In
most cases, temporal and spatial awareness is very important
when processing IoT data [1], [5]. Furthermore, IoT data is
unbounded in most cases, meaning that the devices never
stop sending data. That means that data must be processed
as quickly as it is received to prevent an ever-increasing delay
in processing [6].

There are also a few features that are not as important in
IoT data processing although they may be important in other
domains. The first is the persistent storage of every data point.
Not only is storing all data an IoT device produces often



impossible, it is also sometimes not useful. As this data is
specific to a point in time, data points quickly become outdated
in many scenarios. In these cases, it can be useful to store
only an aggregate of the data or only a recent window of data
points [7], [8].

Furthermore, there is also the issue of Brewer’s CAP
theorem. It describes that in a distributed system, which the
IoT is, there cannot be consistency, availability and partition-
tolerance [9]. In our context, waiving consistency is often
the best option and there are two reasons for this. First,
availability and partition-tolerance of the components is often
more important as the devices should stay working even when
disconnected from the network, which often happens with IoT
devices (say, for example, a connected car driving through a
tunnel) [10]. The second reason is that just like data points
can be outdated, most data is only relevant to a small subset
of the overall system and not every node needs to have access
to a consistent state of the entire system [8], [11]. Given the
importance of the temporal characteristics of a data point, how-
ever, eventual consistency may be problematic as completeness
can also not be guaranteed. Subsequently, it is important to
understand that correctness of the overall system cannot be
always ensured – still, a large-scale distributed system such
as the IoT will simply stop working when forsaking either
availability or partition-tolerance.

The data that IoT devices generate can be used in many
different ways and how it is eventually processed can differ
wildly with different use-cases [12]. However, it can generally
be categorized into two groups: event processing, where an
event triggers a reaction, and data analytics, where data
is collected and processed to obtain information. Zhang et
al. [13] refer to these as “real-time applications with low-
latency requirements” and “ambient data collection and an-
alytics” respectively. Of course, these categories overlap as
an event can also be interpreted as data and data can trigger
certain events [14], [15]. Event processing can have single or
multiple sources and is very time-sensitive, meaning that when
an event happens, it should be reacted to as fast as possible.
This also means that the performed operations are mostly very
simple, such as filtering, comparing, or categorizing [15]. Data
analytics on the other hand stands out in that more complex
operations are performed over data from multiple sources and
over a longer period in time, so results are typically not
expected instantly [16].

B. Edge, Fog, and Cloud Computing

Traditionally, when processing data from different sources,
whether they are located in a company’s data center or on-
demand SaaS, the ETL pattern, that is Extract, Transform and
Load, is often applied, before the stored data can be used
in further analysis. Data is first extracted from services and
other data sources and transferred over the network. In the
transformation step, it is cleaned and structured by a common
processor before being loaded into a data store for persistent
storage. From there, it can be processed further using reporting
tools [17].

IoT Data Processing | T. Pfandzelter | Advanced Topics in IoT 
Page 7 

Cloud Fog Edge 
[10-13, 15] 

Figure 1. Edge and Fog Computing Topology

In an IoT context, having a single data store and common
processor can be helpful for data analytics as it enables a
global view of the overall system and is a familiar architecture.
However, when millions of IoT devices such as sensors or
video cameras constantly send data to a common transforma-
tion agent, this agent and the network can quickly become a
bottleneck as it can only scale-up to a certain level [18], [19].
Furthermore, this approach is flawed in yet another way. In
IoT, latency is everything. When each data point first needs to
be sent to the cloud for processing, it takes at least the network
round trip time for feedback to get to the actual devices, when
in reality, devices may be physically close to each other, e.g.,
when switching on the light in a smart home scenario.

Fog and edge computing can solve these problems. The idea
is to place some data processing components physically closer
to the IoT devices. As seen in Figure 1, this creates a multilay-
ered architecture in which processing can be distributed across
gateways that are in direct communication with the devices,
several fog nodes that bridge the gap to the cloud, and finally
the operator in the cloud, that can still transform and load
data. Aggregating and preprocessing data closer to the devices
reduces the overall network cost and allows for responses with
much lower latencies. However, this of course comes at a cost.
When moving away from the cloud, its benefits such as cheap
and flexible computing power, lower maintenance efforts, or
a higher availability are sacrificed [12], [19].

C. Streams, Functions, and Batch Processing

There are three main paradigms in data processing: stream
processing, batch processing, and serverless functions as in
FaaS (Function-as-a-Service). However, it must be noted that
considering systems on a paradigm level generalizes the sys-
tem design so that actual implementations may differ a lot in
their respective designs. Furthermore, it is of course possible,
given enough customization, to build a stream processor using
a batch processing framework or functions and vice versa. As
systems are readily available for each of the paradigms, such
a philosophical discussion is beyond the scope of this paper.



a) Functions: As a processing model, the (isolated)
function is the simplest one, as it takes a data item as input and
computes an output. This assumes that there is no session state
and all input data are available before the processing starts.
The output is then available at the end, which is very similar
to how for example a web server works. While functionality
seems limited, a function can be easily implemented with
traditional programming techniques and is very scalable. Using
a composition of functions, arbitrarily complex processing
functionality can be realized. One should, however, try to avoid
a data shipping architecture [20]. As stateless components,
functions are trivial to scale.

b) Batch Processing: Batch processing engines, such
as MapReduce [21] are designed to process bigger datasets
efficiently. They use a structured, batched input dataset and
perform complex operations on that dataset, for example
by distributing computation across multiple nodes. Once the
processing is completed, the results, which can be a single
value or a new structured dataset, are collected and made
available. This approach can be very useful if a lot of related
data points need to be processed together, but it also requires
all data to be available before the computation can start [22],
[23].

c) Streaming: Streaming systems process data as it ar-
rives meaning that results can be obtained nearly instantly.
This, of course, comes with some challenges, and only some
streaming engines have matured in the last few years, making
it a relatively new technology compared to the established
batch processing paradigm. One useful feature is that these
stream processors have an inherent temporal awareness given
that they process data only once at the time it arrives [23].
The fact that data is processed as it arrives is both a strength
and a weakness of stream processing. While processed results
are available shortly afterwards, the analysis of a particular
data point cannot quite consider future values and even for
past values there is usually a sliding window defining how far
back analysis can go.

III. EVENT PROCESSING IN IOT

In this section, we will discuss characteristics of event
processing in more detail. We will also describe what on-
device, edge, fog, and cloud computing can provide to support
different use-cases and when it makes sense to use either
stream processing or functions.

A. Characteristics

As we have described above, the goal of event processing
in an IoT context is to react to something that has happened
in the physical world, in this case called an event [15], [24],
[25]. For example, when an Internet-enabled button has been
pressed, this triggers an event. There are a variety of reactions
that can be appropriate for an event. Another IoT device could
perform an action, a notification could be sent to an external
system or service such as IFTTT2, or the device that originally
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triggered the event might need to react. In almost all cases,
however, the system should be optimized to process an event
as fast as possible. In fact, there can often be time constraints
for a reaction [15]. Furthermore, events themselves are often
very simple at a low level as they often do not carry any
data aside from event metadata such as event time, physical
location, severity, or others. Of course, however, once a large
number of IoT devices all send a single event each at the
same time, the total amount of data may still be exceptionally
large [26].

B. Edge, Fog, and Cloud Computing

For event processing, where latency is most important,
keeping processing as close to the event source as possible is
usually the best strategy as the response latency comprises the
round-trip time and the processing time. While the processing
time will typically not change dramatically when moving
between edge, fog, and cloud since typical reactions are
not compute-intensive tasks, the round-trip time is the single
influence factor to control overall reaction latency [4], [15].
On the contrary, when moving closer to the device, flexibility
and computing cost can become an issue. Generally, cloud
computing resources can be scaled up elastically whereas
changing compute capabilities on the edge and on-device
requires investing money and time [12]. Beyond this, it is
important to keep in mind that deciding to move away from
the cloud means losing flexibility.

We therefore propose to process events as close to the
cloud as possible while still on the shortest path between the
event source and the node that needs to react. If the reacting
node is a device on the same edge network for example, the
edge gateway will be a good choice as long as it provides
sufficient resources. On the other hand, if a cloud resource
such as an email service needs to be triggered on an event,
processing might just as well be done in the cloud: As long
as the shortest path between the two nodes is used, the round-
trip time will not change. Hence it makes sense to use the
most flexible and cheapest computing option as it does not
affect event processing time. Furthermore, the closer to the
cloud processing happens, the more complex the processing
can be. For example, when processing multiple events or
event patterns from different devices or edge networks, more
computing power is needed. In that case it makes sense to
process these events on a node shared by all paths after which
the respective paths diverge. In such a case, processing again
happens on the shortest path between all emitting nodes while
being as close to the cloud as possible, thereby maximizing
flexibility and minimizing computational costs.

In the example shown in Figure 2, the event source is an
IoT device. Target 1 in this case is the cloud, for example to
send a text message using an online service when an event is
received. The shortest path to that target is along the edge, fog
and cloud. Hence, processing the actual event in the cloud is
feasible as it does not increase latency. However, target 2 is
a device connected to a different edge gateway but sharing a
fog node. As the shortest path to that device does not cross
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Figure 2. Example: IoT Event Processing

the cloud, sending it along that detour would increase reaction
latency. In this case, processing the event on the node marked
as Processor will usually be the best solution as it maximizes
available compute power without an increase in latency. This
is also desirable from the perspective of the edge node next
to the event source: Its scarce resources can be used for the
things that they are really needed for.

C. Streams, Functions, and Batch Processing

Now that a processing location has been chosen, the next
question is how to process the events at that location. We have
already identified some characteristics of event processing,
such as that it has single or multiple sources, that events
tend to be small in size and that their processing is very
time-sensitive. We have also discussed that computational cost
decreases towards the cloud.

Batch processing is in almost all cases not useful when
processing events as it only works on existing data and is
not flexible enough to process incoming events in a timely
manner. Instead, it is designed to work on larger datasets,
which is not a good fit for single small events. Functions
seem to be a better fit for event processing. As we have
discussed, they are simple and efficient for processing single
data items, e.g., a single event. For a given event as the
input, they can easily trigger the appropriate reactions as an
output. However, once it comes to processing multiple event
sources at the same time to detect patterns for instance, the
simple processing model can quickly reach its limits as well.
As functions are per definition stateless, correlating multiple
events that cannot be passed to the function as a single call
will only work with an external database for event collection.
Stream processing on the other hand is inherently designed
for correlation of multiple events. While excessive for simple
single-source event processing, when multiple event sources
emit numerous events simultaneously, it can be apt to treat
this as a stream of events. Of course, stream processing is
more computationally intensive, so it should be implemented
closer to the cloud. But this should not be an issue as, as we
have described, event complexity decreases towards the edge
of the network anyway.

We therefore propose to use functions for smaller, single
source events, e.g., reacting to someone switching the light on,

whether it is in the cloud or on-device, as they are sufficient
for that use-case while still being efficient enough to be used
even when computing becomes more expensive. When moving
away from devices, possibly on edge gateways but mostly in
the fog or the cloud, stream processing can be a good option
as well, especially once the analysis tasks for the event stream
becomes more complex.

IV. DATA ANALYTICS IN IOT
In this section, we will give a more comprehensive overview

of the properties of data analytics, discuss where to run
data analytics, and describe how to choose between stream
processing, batch processing, and functions.

A. Characteristics
In data analytics, the goal is to extract information from

data. In the IoT context, that means using the data the IoT
devices produce, which can be sensor measurements, location
data, or even a video stream. The main challenge here is the
sheer amount of what is produced by these devices and that
sending all of that data to the cloud for processing is often not
practical, if not impossible, due to bandwidth constraints [3].
On the other hand, in contrast to event processing, processing
that data is not as time-sensitive. However, the operations that
need to be performed on the data are often more complex,
ranging from filtering and aggregation to generating complex
reports or predictive analytics. Furthermore, data analytics is
usually about correlation of multiple data sources.

B. Edge, Fog, and Cloud Computing
As the required analysis functionality tends to be complex

and works on larger data sets, a lot of computational power
is needed which is cheaper in the cloud. However, network
traffic to the cloud is expensive and/or constrained and should
be avoided if possible [27], [28]. Therefore, it makes sense to
preprocess – mainly aggregate or compress – the data close to
the IoT device before transferring it to the cloud for further
analysis. Here, the question is, of course, where to do the
preprocessing.

We propose to implement data analytics in the cloud if
possible, given the much higher flexibility and lower resource
costs. This helps especially when, for example, persistent data
storage is required or when new analysis approaches need
to be tested. However, of course network constraints can
become an issue here. To this end, we also propose that some
preprocessing on the data should be done. This can include
filtering, transformation, encoding, or aggregation, all of which
can save bandwidth. These actions may also be performed
dynamically, e.g., a video might be encoded differently based
on its contents, which requires analysis of the video data
before it is sent to the cloud, so we include dynamic adaption
in preprocessing. In each case, preprocessing in terms of data
reduction should be run as close to the edge as feasible, i.e.,
as long as sufficient computer power is available, so as to save
as much bandwidth as possible. In the end, it is likely to come
down to a question of pricing – compute cost at the edge vs.
bandwidth cost [27], [28].



C. Streams, Functions, and Batch Processing

Based on the already identified locations for data analysis
and preprocessing, the question is whether to use batch pro-
cessing, streams, or functions.

As long as preprocessing near the edge or in the fog is
limited to filtering, compression, aggregation per data source,
or other data reduction mechanisms, functions are a good
choice. As soon, however, that preprocessing involves more
complex processing tasks that are already part of data analysis
– which however will also be not direct at the edge – then
stream processing is the most promising paradigm.

For the cloud part where most of the actual data analytics
are run, it depends on the concrete requirements. If there are
no temporal requirements, e.g., when the analysis results are
accessed periodically anyhow, then batch processing might
be the best paradigm. This is particularly so since batch
processing does not have the windowing restrictions of stream
processing and can correlate individual data points with all
other data points in a data set and can also run cyclic operator
graphs. It supports therefore arbitrary analysis tasks. Stream
processing, on the other hand, can provide insights in near real-
time which is desirable in many use-cases. As requirements
sometimes change, stream processing will typically be the best
option whenever the desired analytics task is supported by the
processing task.

V. RELATED WORK

As we have discussed already, IoT and, related to that, edge
and fog computing, have been a popular research topic in
recent times. For example, Bonomi et al. [1] have stressed the
importance of fog computing for IoT and Yannuzzi et al. [2]
have argued that ”fog computing is the natural platform for
IoT”. Anawar et al. [16] have already presented an extensive
overview of the strengths and weaknesses of edge, fog and
cloud computing in an IoT context and how it can be used for
big data analytics.

Data processing at the edge and in the fog in general have
received some attention. For example, Hussain et al. [19] have
used data processing in the fog for a real time smart parking
system and Kholod et al. [29] have implemented an approach
to reduce data transfer from IoT devices to the cloud through
local preprocessing.

Meanwhile, Pisani et al. [18] have proposed a framework
for bringing code execution from the cloud to IoT devices.
Mehdipour et al. [30] have proposed a similar solution for big
data analytics.

Similarly, projects such as Apache Edgent [31] and sen-
sorbee [32] have also brought streaming analytics closer to
the edge of the IoT network. Furthermore, Sajjad et al [33]
have also proposed SpanEdge, a framework that unifies stream
processing across the edge, fog and cloud. Yasumoto et
al. [34] have also published a survey on real-time processing
technologies for IoT. Of course, big data in general has been
an important term in Computer Science in recent years. In
that context, especially stream processing has gained more

traction as a solution for efficiently processing large, con-
stantly evolving data sets. While earlier research, such as
that of Kejariwal et al. [35] and Kiran et al. [36], often
uses the lambda architecture that combines batch and stream
processing, Kreps [37] has proposed using just a streaming
engine to do all data processing, which has also been discussed
by Lin [38]. Spark Streaming3 can be seen as a middleground
solution between batch processing and streams as it allows
users to process so-called microbatches.

But also, event processing and, more specifically, complex
event processing, in an IoT context have received more atten-
tion. In fact, Govindarajan et al. [15] have motivated the need
for moving event processing closer to the edge. Further, Ghosh
et al. [24] have even implemented an automated approach
to complex event processing in the fog that places the event
processor on specific cloud or edge resources to optimize for
dataflow latency using a genetic algorithm, thereby obviating
the need for a decision to be made when designing the system.

Complementary to our analytic discussion of different
paradigms and deployment options, Hasenburg et al. [27], [28]
have proposed FogExplorer as a toolkit to interactively explore
the QoS and cost effects of different placement options for fog-
based functions. This could easily be extended to also cover
stream operators but does not discuss the question of choosing
a different processing paradigm. Finally, environments such as
MockFog [39] can be used to explore different deployment
options with various open source stream, batch, and function
systems. We propose to use our decision framework to reduce
the set of paradigms and deployment options first, then to nar-
row down the deployment options further with FogExplorer,
and finally to validate the decision with a small number of
experiments on MockFog.

VI. CONCLUSION

In this work, we have presented a framework for deciding
when and where to implement functions, stream processing,
and batch processing in an IoT data processing context. For
this purpose, we have discussed the different use-cases of event
processing and data analytics, highlighting the capacities of
on-device, edge, fog, and cloud computing and demonstrating
the strengths and weaknesses of each approach.

Of course, IoT is a wide topic and we are not able to
cover all possible data processing use-cases. We have also
limited our approach to a hierarchical network of devices,
edge gateways, fog nodes, and the cloud, while in reality there
may be more or less components, or they may be connected
differently. We have also not covered issues of data protection
and security, both of which are of great importance in cloud
and fog computing and the general IoT. And finally, we
have only approached this topic from an analytic perspective,
largely without mentioning specific technologies and services
available in research and on the market today, with respect to
cloud providers, stream processing frameworks, IoT devices,
etc. We believe, however, that our framework can be helpful

3spark.apache.org/streaming



as general guideline for dealing with IoT data processing and
architecting data-intensive fog applications.
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