
Is it Safe to Dockerize my Database Benchmark?
Martin Grambow, Jonathan Hasenburg, Tobias Pfandzelter, David Bermbach

TU Berlin & Einstein Center Digital Future, Mobile Cloud Computing Research Group
mg,jh,tpz,db@mcc.tu-berlin.de

ABSTRACT
Docker seems to be an attractive solution for cloud database bench-
marking as it simplifies the setup process through pre-built images
that are portable and simple to maintain. However, the usage of
Docker for benchmarking is only valid if there is no effect on mea-
surement results. Existing work has so far only focused on the
performance overheads that Docker directly induces for specific
applications. In this paper, we have studied indirect effects of dock-
erization on the results of database benchmarking. Among others,
our results clearly show that containerization has a measurable and
non-constant influence on measurement results and should, hence,
only be used after careful analysis.

CCS CONCEPTS
• General and reference→ Measurement; Performance;

KEYWORDS
Database benchmarking, Docker, Performance
ACM Reference Format:
Martin Grambow, Jonathan Hasenburg, Tobias Pfandzelter, David Bermbach.
2019. Is it Safe toDockerizemyDatabase Benchmark?. In The 34th ACM/SIGAPP
Symposium on Applied Computing (SAC ’19), April 8–12, 2019, Limassol,
Cyprus. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3297280.
3297545

1 INTRODUCTION
Benchmarking has long been used for the comparison of software
and hardware systems or software versions [11]. When done right,
it is surprisingly hard as conflicting goals such as reproducibility,
portability, understandability, fairness, ease-of-use, and relevance
need to be balanced [2, 9, 12, 16]. When focusing on reproducibility
and ease-of-use, an engineer running a systems benchmark is likely
to encounter two main challenges: First, correctly installing and
configuring both benchmarking client and the system under test
(SUT) can be error-prone and challenging, or at least involves a lot
of effort. Second, for reproducibility reasons, benchmark runs need
to be repeated several times – preferably on a fresh system setup
which aggravates the first challenge.

A solution that naturally lends itself to these challenges is to
dockerize [13] both benchmarking client and SUT, thus, using con-
tainers as a convenient deployment mechanism for preconfigured,
ready-to-use experimental setups. This has already been done, e.g.,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5933-7/19/04.
https://doi.org/10.1145/3297280.3297545

VM

Docker

Benchmark Client

Lo
ad

Lo
ad

VM

Docker

Database System

VM

Docker

Benchmark Client Load

Figure 1: Different Perspectives in Experimentation with
Docker

by Palit et al. [15]. However, it is unclear whether this will affect
benchmarking results. There are several studies, e.g., [5–7, 13, 17],
measuring the overheads that various applications might incur
when running inside containers instead of on bare metal or inside
a virtual machine. These, however, all quantify the overhead that is
induced by Docker for a certain workload or application. Neither of
these studies measures indirect effects of Docker that, for instance,
a database benchmark running against an SUT on another machine
might experience. For such a benchmark, indirect effects might
lead to volatile and unpredictable changes in benchmarking results
rendering results at least partially obsolete. See also figure 1 which
gives a high-level overview of the different perspectives taken in
related work (on the left) and in this paper (on the right).

In this paper, we aim to answer the question whether it is safe
to dockerize database benchmarks, i.e., whether dockerization of
benchmarking client and/or SUT has observable effects on measure-
ment results. For this purpose, we designed a set of experiments that
not only quantifies possible dockerization impacts on benchmark-
ing results but also explores whether different standard settings
of both benchmarking client and SUT can further influence poten-
tial impacts. Based on this, as our main contribution, we discuss
the results of extensive experimentation with YCSB1 (the de-facto
standard for benchmarking of database systems) and Apache Cas-
sandra2 (a widely used NoSQL system) running on Amazon EC23.
As a second contribution, we use our observed results to give recom-
mendations and identify implications for database benchmarking
with and without Docker4.

2 RELATEDWORK
There are already several publications trying to quantify the per-
formance overhead of dockerization. For instance, Chung et al. [5]
have benchmarked high performance computing applications (HPL
and Graph500) running in Docker containers and found remarkable
differences to the performance without docker.
In difference to the findings of Chung et al, Di Tommaso et al. [6]
have tested Docker’s impact on the performance of genome analysis

1github.com/brianfrankcooper/YCSB
2cassandra.apache.org
3aws.amazon.com/ec2
4An extended version of this paper is available as technical report [10]

https://doi.org/10.1145/3297280.3297545
https://doi.org/10.1145/3297280.3297545
https://doi.org/10.1145/3297280.3297545

SAC ’19, April 8–12, 2019, Limassol, Cyprus M. Grambow et al.

I

Database
System

VM

Benchmark
Client

VM

Load

II

Database
System

VM

Benchmark
Client

VM

Docker

Load

III

Database
System

VM

Docker

Benchmark
Client

VM

Load

IV

Database
System

VM

Docker

Benchmark
Client

VM

Docker

Load

Figure 2: Dockerization Variants in Database Benchmarking

pipelines and concluded that the Docker technology only introduces
a negligible performance overhead for their purposes. They exe-
cuted multiple tests on a cluster of 12 high performance machines
and compared the execution time of tasks running in Docker con-
tainers to the native performance.
Felter et al. [7] compared the performance of Docker containers
and virtual machines utilizing microbenchmarks on a 32 vCPU
instance equipped with a not specified but “adequate” amount of
memory to execute the given workload. Similar to Di Tommaso et
al., they conclude that Docker introduces a negligible computation
and memory overhead in most cases, but I/O-intensive workloads
should be used carefully as extra cycles are needed for each I/O
operation.
Ali et al. [1] benchmarked the performance impact of Docker to-
gether with VM technology using microbenchmarks and measured
overheads of up to 4%.

In all these publications, the authors measured the directly visible
overhead of Docker for a certain workload or application. Some-
what comparable to the TLS experiments of Müller et al. [14], we
are interested in indirect effects of Docker on applications running
inside containers. Specifically, we aim to evaluate whether it is
safe to dockerize benchmarks, i.e., whether dockerization of bench-
marking components does not affect measurement results – neither
actual measurement values nor their stability and reproducibility.
To the best of our knowledge, this has not been experimentally
studied yet. However, such an evaluation is needed as some cloud
service benchmarking tools already use Docker as a deployment
mechanism. For instance, Palit et al. [15] published a suite of cloud
service benchmarking tools as Docker images, Ceesay et al. [4] have
built an entire cloud benchmarking framework around Docker, and
Ferme et al. [8] have containerized the benchmarking of workflow
management systems.

3 EXPERIMENT DESIGN
With our experiments, we analyze whether dockerization of bench-
marking client and/or SUT has observable effects on measurement
results, figure 2 illustrates the four base configurations to compare:
no dockerization (I), dockerized benchmarking client (II), docker-
ized SUT (III), and full dockerization (IV).

Through this comparison, we can not only determine whether
Docker has an impact on benchmarking results but also determine
whether the effect is caused at the SUT or the benchmarking client.
For each of the four setups, we also tweaked various parameters

Machine Parameter Variations

Client
Docker Yes, No

Thread Count 10, 25, 50 OR
30, 75, 150

SUT

Docker Yes, No
Key Cache Size 0, Auto

Compaction Strategy STCS, TWCS, LCS
General Instance Type m3.medium, m3.large

Total Number of Experiments 720

Table 1: Experimental Parameter Variations

in the benchmarking client and in the SUT to evaluate whether
the dockerization impact can also be affected by other parameters.
Therefore, we ran all experiments on both m3.medium and m3.large
instances in the AWS region Ireland, with client and SUT running
on two instances of the same time within the same availability
zone. We chose these instance types as they do not provide credit-
based “burst” performance might render results meaningless. Each
experiment was repeated 5 times.

To ensure a consistent environment, we fully automated the
benchmarking process and pre-built all used Amazon Machine
Images and Docker containers; both containing only the software
necessary for the experiments.We alsomonitoredmachine resource
utilization to avoid a bottleneck in the client machine. We deployed
a single Apache Cassandra node as SUT in our experiments5. To
simulate a “typical” setup, we used default values for all configu-
ration options in our experiments but also changed Cassandra’s
compaction strategy (Size Tiered Compaction Strategy (STCS), Time
Window Compaction Strategy (TWCS), Level Compaction Strategy
(LCS)) and key cache size (disabled or “auto”). On the client machine,
we ran YCSB using Workload A (50% reads and 50% writes). For
the m3.medium instances, we used 100,000 records and 3,000,000
operations; for the m3.large instances, we used 100,000 records and
9,000,000 operations to achieve sufficiently long-running experi-
ments. In preparatory experiments, we observed that throughput
does not increase beyond 50/150 threads for m3.medium/m3.large
respectively, while latencies continued to increase. To measure the
effects of dockerization under different resource utilizations, we
varied the thread counts used (see table 1); in total we ran 720
experiments.

4 RESULTS
In this section, we discuss the results of our experiments starting
with aggregates before continuing with a more detailed look.

4.1 General Results
Dockerization introduces an additional layer so that we expected
a decrease in throughput when using Docker (setups II and III),
especially for the fully dockerized setup (setup IV). As expected, our
findings show that the dockerization of benchmarking components
typically increases latency and decreases throughput. However, in
5We chose a single node deployment to reduce the number of influence parameters in
our experiments.

Is it Safe to Dockerize my Database Benchmark? SAC ’19, April 8–12, 2019, Limassol, Cyprus

th op I II III IV

10 Read 0% 1.42% 1.84% 1.21%
Update 0% 1.79% 5.13% 4.53%

25 Read 0% −0.09% −0.01% 0.69%
Update 0% 0.50% 3.06% 3.73%

50 Read 0% 2.51% −0.52% −0.97%
Update 0% 2.72% 2.66% 2.20%

Read avg 0% 1.28% 0.44% 0.31%
Update avg 0% 1.67% 3.62% 3.49%

Table 2: Rel. Changes of Avg. Latency forn = 30 Experiments

th op I II III IV

30 Read 0% 5.53% 7.02% 11.74%
Update 0% 5.81% 7.25% 12.07%

75 Read 0% 6.81% 2.50% 8.85%
Update 0% 6.73% 2.43% 8.70%

150 Read 0% −0.63% −2.38% 1.46%
Update 0% 2.96% 1.43% 5.36%

Read avg 0% 3.90% 2.38% 7.35%
Update avg 0% 5.17% 3.70% 8.71%

Table 3: Rel. Changes of Avg. Latency forn = 30 Experiments

some cases Docker even increased throughput which is probably
caused by variance of the underlying cloud infrastructure.

In our results read and update latency appear to be closely related;
there seems to be no dockerization effect that only affects one of
the two.

For our analysis, we calculated the average read and update la-
tency grouped by instance type, thread count (th), and degree of
dockerization (I-IV), each average value was based on 30 experi-
ment runs. Tables 2 and 3 show relative latency changes of these
averaged values compared to the baseline across all four setups:
Setup I (no dockerization) is the baseline, setups II and III (partial
dockerization), and setup IV (full dockerization); a latency increase
is a positive value.

In general, our results show an increasing read and update la-
tency of operations if components are dockerized. Especially update
operations provoke a significant overhead, on average 8.71% for
m3.large instances. On the other hand, we also observed read opera-
tion performance improvements for experiments with higher thread
counts on the client side. Furthermore, we discovered that dock-
erization has a stronger effect on m3.large instances. Finally, the
overheads appear to increase for lightly loaded systems. Already
these aggregates indicate that dockerization of database bench-
marks should only be done after careful analysis.

4.2 Median Experiment Runs
As described in section 3, we repeated each experiment 5 times
to account for random fluctuation of the cloud infrastructure. We,

18,5

19

19,5

20

20,5

21

21,5

Read ,
m3 .med ium

Upda te ,
m3 .med ium

Read , m3 . l a rge Upda te ,
m3 . l a rge

|m
s]

Time Window Compaction Strategy without caching

(I) (II) (III) (IV)

Figure 3: Typical Result: Dockerization Increases Latency

here, report the results of the median runs instead of calculating
averages as the median is more stable in the presence of outliers.
We define the median run for a specific parameter set as the run
with the median throughput. In this context, please, note that YCSB
reports the average latency. We, here, report the median of 5 such
average latency values.

Most experiments had similar results. In figure 3, we show an
example (m3.large and m3.medium, TWCS compaction, disabled
cache, 50 and 150 threads respectively); Our full data set is available
on GitHub6: Dockerizing either YCSB or Cassandra typically in-
creases the average latency for read and update operations slightly,
while full dockerization has a much stronger effect. The standard
deviation of latencies (across the respective five experiment repe-
titions) varied from 0.21 ms to 1.38 ms for m3.medium instances,
and from 0.30 ms to 0.95 ms for m3.large instances respectively.
However, we also found very few experiments where results devi-
ated from the patterns set in figure 3. Overall, we believe that the
more unexpected results might be caused by random performance
variation of the underlying VMs.

4.3 Settings in Cassandra
Besides the general influence of Docker on the benchmarking pro-
cess, we also evaluated different settings in the configuration of
Cassandra. Our experiments indicate that changing the key cache
setting does neither influence the performance of Cassandra itself
(for our experiment workload), nor does it influence the dockeriza-
tion effects we reported in section 4.2. Especially for light workloads,
our results clearly show that caching neither has an effect on the
performance of Cassandra nor does it result in an additional in-
fluence on the dockerization effects: At higher load (50 and 150
threads respectively), however, this is still not clear as the over-
all variance of results (no matter whether dockerized or not) was
too high to draw a well-founded conclusion. Besides the cache set-
ting, we also evaluated how Docker influences the benchmarking
results when running the experiments with different Cassandra
compaction strategies. On m3.medium instances, we found that
the chosen compaction strategy has a negligible impact on Cas-
sandra when running a light workload. This, of course, implies
that the compaction strategy does not have an influence on the
existing dockerization effects. On m3.large instances, again lightly
loaded, we found that the compaction strategies have an influence
6https://github.com/martingrambow/dockerExperiments

https://github.com/martingrambow/dockerExperiments

SAC ’19, April 8–12, 2019, Limassol, Cyprus M. Grambow et al.

on Cassandra (with leveled compaction being the fastest) but this
influence is constant across different dockerization setups. This
means that the compaction strategy does not cause an additional ef-
fect on the dockerization impacts. On both machine types, we again
found large overall performance variability across experiment runs
(independent of the degree of dockerization). We assume that this
increased variance is caused by the high utilization of the virtual
machines which might lead to conflicts in the scheduling of threads
and thus results in unstable latencies. A more detailed analysis
for heavy workloads requires significantly more experiments and
further investigation; this is beyond the scope of our paper.

5 IMPLICATIONS
As described in chapter 4, our results clearly show an influence
of Docker on the results of database benchmarking experiments.
However, this influence is not constant as it varies for different
configurations and can be up to 12% (in our experiments) which
may be still acceptable for some use cases. So what does this mean
for database benchmarking?

First, results of dockerized benchmarks can be acceptable when
comparing different database systems. In such a case, the absolute
measurement values should be disregarded; the ordering of system
alternatives, however, is unlikely to change if the difference between
alternatives is sufficiently large – e.g., greater than 20-30%.

Second, benchmark setups should be as close as possible to the
production environment that they try to emulate [3]. This, however,
implies that when production systems are supposed to be dock-
erized, benchmarking systems also need to be dockerized when
measurement accuracy matters.

Third, when evaluating system configurations or implementation
alternatives, it may be an option to dockerize the benchmark (as is
commonly done in build processes). However, such results can only
be used to achieve a general “feeling” of a system’s performance.
Actual numbers are too unreliable.

Fourth, in many cases it may be acceptable to dockerize the
benchmark as long as it stays dockerized and no configuration
changes are made. Absolute values should still not be compared
to non-dockerized values directly (or should be taken with a grain
of salt), but the workload generation and measurements should be
stable enough for comparison over multiple measurements.

Finally, repeating sufficiently long experiments is always impor-
tant in benchmarking. When using dockerization, however, even
more repetitions and longer experiments should be used to identify
random fluctuations introduced through another layer of indirec-
tion.

6 CONCLUSION
In this paper, we acknowledged the growing importance of Docker
for the benchmarking community. However, we noted that the effect
of dockerization on benchmarking results is still unclear as prior
studies have only measured the direct overhead of dockerization
on certain workloads or applications. To extend prior attempts to
quantify the influence of Docker, we ran a series of 720 experiments
with and without Docker of a Cassandra-YCSB benchmarking setup.

Our results show that the dockerization of benchmarking tool
and/or SUT indeed has an influence on benchmarking results that

ranges from -2% to 12%. Furthermore, we observed that the impact
of Docker on latency is less prominent for heavy workloads. Based
on our results, we conclude that the dockerization of benchmarking
system and SUT is not a good idea (if the production environment
is not dockerized as well), and that results should only be used for
a general ranking of SUTs.

In future work we would like to study Docker’s impact on a
distributed Cassandra cluster, run additional experiments to better
understand the impact of Docker’s layered file system, and build a
framework for benchmark automation that makes careful use of
dockerization based on a knowledge base of dockerization impacts.

REFERENCES
[1] Q. Ali, B. Agrawal, and D. Bergamasco. Docker containers perfor-

mance in vmware vsphere. https://blogs.vmware.com/performance/2014/10/
docker-containers-performance-vmware-vsphere.html (accessed on Apr 21, 2018),
2014.

[2] D. Bermbach, J. Kuhlenkamp, A. Dey, S. Sakr, and R. Nambiar. Towards an
Extensible Middleware for Database Benchmarking. In Proc. of TPCTC. Springer,
2014.

[3] D. Bermbach, E. Wittern, and S. Tai. Cloud Service Benchmarking: Measuring
Quality of Cloud Services from a Client Perspective. Springer, 2017.

[4] S. Ceesay, A. Barker, and B. Varghese. Plug and play bench: Simplifying big data
benchmarking using containers. CoRR, abs/1711.09138, 2017.

[5] M. T. Chung, N. Quang-Hung, M.-T. Nguyen, and N. Thoai. Using docker in high
performance computing applications. In Proc. of ICCE. IEEE, 2016.

[6] P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and C. Notredame.
The impact of docker containers on the performance of genomic pipelines. PeerJ,
3, 2015.

[7] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance
comparison of virtual machines and linux containers. In Technical Report RC25482.
IBM Research, 2014.

[8] V. Ferme, A. Ivanckikj, C. Pautasso, M. Skouradaki, and F. Leymann. A container-
centric methodology for benchmarking workflow management systems. In Proc.
of CLOSER 2017. SciTePress, 2016.

[9] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun. Bench-
marking in the cloud: What it should, can, and cannot be. In Proc. of TPCTC 2012.
Springer, 2013.

[10] M. Grambow, J. Hasenburg, T. Pfandzelter, and D. Bermbach. Dockeriza-
tion impacts in database performance benchmarking. In Technical Report
MCC.2018.1. TU Berlin & ECDF, Mobile Cloud Computing Research Group.
https://github.com/martingrambow/dockerExperiments, 2018.

[11] J. Gray. Database and transaction processing handbook. The Benchmark Handbook
for Database and Transaction Systems, 1993.

[12] K. Huppler. The art of building a good benchmark. In Proc. of TPCTC 2009.
Springer, 2009.

[13] D. Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(vol. 239), 2014.

[14] S. Müller, D. Bermbach, S. Tai, and F. Pallas. Benchmarking the performance
impact of transport layer security in cloud database systems. In Proc. of IC2E.
IEEE, 2014.

[15] T. Palit, Y. Shen, and M. Ferdman. Demystifying cloud benchmarking. In Proc. of
ISPASS. IEEE, 2016.

[16] J. v. Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange, J. L. Henning, and P. Cao.
How to build a benchmark. In Proc. of ICPE 2015. ACM, 2015.

[17] B. Varghese, L. T. Subba, L. Thai, and A. Barker. Container-based cloud virtual
machine benchmarking. In Proc. of IC2E. IEEE, 2016.

https://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
https://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html

	Abstract
	1 Introduction
	2 Related Work
	3 Experiment Design
	4 Results
	4.1 General Results
	4.2 Median Experiment Runs
	4.3 Settings in Cassandra

	5 Implications
	6 Conclusion
	References

