
Managing Latency and Excess Data Dissemination
in Fog-Based Publish/Subscribe Systems

Jonathan Hasenburg∗, Florian Stanek∗, Florian Tschorsch†, David Bermbach∗
TU Berlin & Einstein Center Digital Future

∗Mobile Cloud Computing: {jh, fst, db}@mcc.tu-berlin.de
†Distributed Security Infrastructures: florian.tschorsch@tu-berlin.de

Abstract—Today, communication between IoT devices heavily
relies on fog-based publish/subscribe (pub/sub) systems. Com-
municating via the cloud, however, results in a latency that is
too high for many IoT applications. In this paper, we describe
the design of a fog-based pub/sub system that integrates edge
resources to improve communication latency between end de-
vices in proximity. To this end, geo-distributed broker instances
organize themselves in dynamically sized broadcast groups.
Each broadcast group comprises a set of well connected edge
brokers that communicate directly using flooding. This minimizes
communication latency and copes well with frequently updated
subscriptions and mobile end devices, which is required by many
IoT applications. Messages between broadcast groups are routed
via a massively scalable fog broker that pre-filters messages
to reduce excess data dissemination. Our approach, therefore,
manages the tradeoff between latency and excess data.

Index Terms—Publish/Subscribe, Fog Computing, Latency,
Excess Data, Tradeoff

I. INTRODUCTION

To realize asynchronous, loosely coupled communication
between a large number of IoT devices, widely used systems
such as AWS IoT1 or Google Cloud IoT2 build upon topic-
based publish/subscribe (pub/sub). Pub/sub systems are gen-
erally beneficial as they are payload agnostic and facilitate
communication between end devices that do not even have to
know each other [1]. These systems, however, usually run in
cloud environments, which leads to higher latency than many
IoT applications can tolerate.

The emerging fog computing paradigm promises low la-
tency while also keeping the scalability aspects of the
cloud [2]: For low latency, application components are de-
ployed close to or at the edge; for high scalability, they are de-
ployed in or near the cloud. To make topic-based pub/sub sys-
tems fog-ready, we propose to geo-distribute broker instances
across edge resources in a way that individual messages of
local end devices can be delivered with low latency. Especially
in global deployments, the number of edge brokers can quickly
increase to thousands of individual instances. All these brokers
have to be interconnected—this is needed to deliver messages
to subscribed end devices independent of the broker at which
it has created a subscription.

There are two general strategies for message distribution:
(i) global flooding, i.e., broadcasting messages directly to all

1https://aws.amazon.com/iot/
2https://cloud.google.com/solutions/iot/

brokers, and (ii) cloud relay, i.e., a cloud instance forwarding
messages from and to edge brokers. With global flooding,
communication latency is optimal and mobile end devices
can create their subscription at any broker to immediately
receive matching messages. With cloud relay, edge brokers
forward their messages and subscription to a central cloud
broker, which uses the subscription information to decide
where to forward the messages. While minimizing excess data
dissemination, this increases latency.

From the two strategies, it becomes clear that there is a
tradeoff between latency and excess data dissemination when
deploying pub/sub systems in the fog. Existing solutions, e.g.,
[3]–[5], do either not address this tradeoff or require a holistic
view on all messages and subscriptions. Furthermore, these
solutions are incompatible with existing pub/sub systems,
which render scenarios such as running AWS IoT alongside
an adapted broker at the edge infeasible.

In this paper, we propose a decentralized solution that
relies on dynamic broadcast groups. Within a broadcast group,
brokers exchange messages based on flooding, whereas a cloud
broker relays inter-group messages. With the broadcast group
size, we have a tunable parameter for the management of the
tradeoff between excess data and latency. Consequently, we
make the following main contributions:

• We present the design of a fog-ready topic-based pub/sub
system that relies on broadcast groups, a novel commu-
nication strategy (Section II).

• We demonstrate that our approach integrates out-of-the
box with any MQTT broker available today and present
our proof-of-concept implementation (Section III).

• We extensively evaluate our approach with simulation
and experiments executed on an emulated fog computing
testbed (Section IV).

The results confirm that our approach achieves low com-
munication latency and reduces the excess data, effectively
managing the tradeoff.

II. BROADCAST GROUPS

The main idea behind our broadcast groups approach is to
split the set of edge brokers into well connected groups which
use flooding for intra-group communication and a cloud relay
for inter-group communication. This minimizes communica-
tion latency at the edge, i.e., where a low communication
latency is often required by end devices in close proximity [6].



L1

C

L2 Li

M2M1 M3 M4 M5 Mj

Figure 1. Broadcast group overlay network topology.

Examples for this can be found in Internet-of-Vehicles [7], [8],
Smart City [9], or Mobile Health [10] scenarios. As a side
effect, flooding also handles frequently updated subscriptions
of mobile end devices particularly well, as messages are sent
preemptively to all brokers at which an end device could create
its subscriptions. For global communication, each broadcast
group elects a leader that communicates on behalf of the group
with the cloud broker (and thus also other group leaders).

A. Topology

Our approach builds upon a broker overlay network ar-
ranged in three tiers as shown in Figure 1. Each topology
comprises a cloud broker C, a set of leaders L1, . . . , Li, and
a set of members M1, . . . ,Mj . This topology is the result
of the group formation process (Section II-C) that assigns
individual edge brokers3 to a single leader. A leader and its
members form a broadcast group (gray area in the figure);
each broadcast group must, at least, consist of a single leader.

Member nodes act as normal pub/sub broker instances, i.e.,
they allow end devices to connect, subscribe, unsubscribe,
and publish messages. Besides matching messages locally,
they forward all subscribe and unsubscribe messages to the
group leader. While the group leader can also act as a
normal pub/sub broker, it additionally creates subscriptions
on behalf of its end devices at the cloud broker. This has
the advantage of relieving (computationally) weaker members
of the group from managing a connection to the cloud broker,
while also preventing multiple subscriptions to the same topic
by individual group members as these are collapsed into a
single one by the leader.

B. Message Dissemination

The brokers in a broadcast group form a broadcast domain
for publish and subscribe messages. When a broker receives a
subscribe message from an end device, it forwards the message
to its leader. The leader then creates a subscription on behalf
of the entire group at the cloud broker.

When a broker receives a publish message from an end
device, it broadcasts the message to the group. In addition,
the leaders forwards every received message (either from end
devices or its members) to the cloud broker. The cloud broker

3Note, that any broker may in fact be a clustered pub/sub system.

Algorithm 1 Group merge, notification, and join
function DOGROUPMERGE(otherLeader)

newLeader ← negotiateLeader(otherLeader)
if newLeader = otherLeader then

notifyMembersAboutMerge(newLeader)
joinLeader(newLeader)

end if
end function

function JOINLEADER(newLeader)
connectToLeader(newLeader)
brokers = getBrokersInBroadcastGroup(newLeader)

end function

function ONMERGENOTIFICATION(newLeader)
if latencyBelowThreshold(newLeader) then

joinLeader(newLeader)
else

createNewBroadcastGroup()
end if

end function

distributes the message to all other group leaders that have
created a matching subscription. If any leader receives such a
message, it broadcasts the message to the group.

C. Group Formation Process and Leader Election

Initially, each broker joining the system takes the role of a
leader and forms its own broadcast group. Leaders subscribe
to a dedicated topic at the cloud broker. They regularly publish
their IP address to this topic to announce their presence
to other leaders. In case of very large deployments, leader
announcements can be partitioned by using diverse topics. For
example, brokers in Europe could subscribe and publish to the
topic leaders/europe while brokers in North America could use
the topic leaders/northamerica.

Leaders continuously monitor the latency to other known
leaders. When a leader observes a latency below a threshold,
it initiates a group merge (cf. Algorithm 1). Part of the group
merge process is the leader election, which can build on
properties such as the compute power or the current bandwidth
to the cloud broker. In many cases, however, it is sufficient to
just assign a value to each broker on startup that indicates
available resources; we call this value Leadership Capability
Measure (LCM). During the negotiation, the leaders would
then exchange their LCMs and the leader with a higher LCM
becomes the leader of the joint group.

Members continuously measure the latency to their leader.
If a member observes a latency above a threshold, it leaves the
group. By leaving the group, the broker automatically becomes
the leader of a new broadcast group that only comprises a
single broker. Members also start their own broadcast group
when they receive a merge notification but the latency to the
new leader is above the latency threshold. One solution to
avoid oscillating membership is to use two latency thresholds:



a lower one for joining and a higher one for leaving. In
addition, whether latency exceeds or falls below a threshold
should also be based on a moving average of observed latency
values.

The group formation process terminates, when the following
two conditions are true: (i) For every leader, the latency
to all other leaders is above the latency threshold. (ii) For
every member, the latency to its leader is below the latency
threshold. If either condition is violated, e.g., because of
infrastructure changes or broker failure, group formation con-
tinues until both conditions are met again.

D. Summary

In essence, the group formation process transitions from a
pure cloud relay solution (every broker is its own leader), to an
intra-group flooding solution. The size of resulting broadcast
groups (and thus the tradeoff between excess data and latency)
can be controlled through the latency threshold. In the presence
of failures or changing network conditions at the edge, brokers
can always fall back to cloud relay. This ensures continuous,
global message delivery as long as brokers can connect to
the cloud broker, i.e., overall availability is at least as good
as cloud relay, but possibly higher through group internal
message distribution near the edge. Even if a leader node fails,
its member nodes will start their own, individual broadcast
groups before running through the group formation process
again. As this process does not require central orchestration,
network partitions also do not prevent group formation in
general; only the broadcast groups that cannot communicate
with the Cloud anymore are affected. Furthermore, local traffic
between end devices that are connected to the same broker is
always delivered, even if there is temporarily no connection
to any other broker available.

III. PROOF-OF-CONCEPT PROTOTYPE

As a proof-of-concept, we extended the implementation
of the popular MQTT broker Moquette4 with the features
necessary for our proposed broadcast group approach. Our im-
plementation is available on GitHub5. While it is necessary to
add some functionality for the formation of broadcast groups
(see below), these broadcast group brokers can interoperate
with unmodified vanilla brokers for two reasons: First, the
cloud broker that ensures global communication can be any
kind of MQTT broker (e.g., in the subsequent evaluation, we
use a vanilla Mosquitto broker6 for that purpose). Second,
leaders act on behalf of their broadcast group’s members.
Thus, to other brokers, broadcast groups appear to comprise
a single broker only and the modified brokers simply assume
that vanilla brokers are unwilling to join a broadcast group for
latency reasons.

For our proof-of-concept prototype, we added the following
functionality to Moquette (about 1,700 lines of Java code):

4https://moquette-io.github.io/moquette/
5https://github.com/MoeweX/moquette
6https://mosquitto.org/

• Leader announcements and continuous latency measure-
ments to other leaders.

• Group merges in compliance with our described group
formation process.

• Latency aware members, i.e., they leave a broadcast group
when they measure a higher latency to their leader than
allowed by the latency threshold.

• Broadcast group message dissemination.
• Communication with a cloud broker (can be any MQTT

compliant broker); for this, we use Eclipse Paho7.

IV. EVALUATION

Our evaluation comprises a simulation analysis of the group
formation (Section IV-A) and experiments using our proof-of-
concept prototype in an Internet-of-Vehicles (IoV) scenario
(Section IV-B). The simulation analysis builds upon a global
deployment so that we can study effects in our target environ-
ment. The experiments, on the other hand, only comprise a
limited number of brokers as this is sufficient to validate that
our prototype can manage the tradeoff between excess data
and latency.

A. Simulation: Overhead of the Group Formation Process

Many parameters influence the group formation process,
e.g., the latency between broker machines, the latency thresh-
old, heterogeneity of broker resources, or the number of broker
instances. To better understand these effects, we implemented
event-discrete simulation of the group formation process to
evaluate it in large geo-distributed deployments. In the fol-
lowing, we will use simulation results to discuss:

1) how the latency threshold influences the total number of
broadcast groups,

2) and the group formation overhead, i.e., the number of
messages needed to complete the process.

For this discussion we executed 160 simulation runs of the
group formation process with different broker numbers and
latency thresholds. Broker locations and resulting network la-
tency are based on the worldcities data set from simplemaps8.
The intuition behind this is that each city has access to its
own pub/sub broker, and that all these edge brokers are inter-
connected for global communication. More details can be
found in the GitHub repository9 of our simulation tool.

As expected, Figure 2 shows that increasing the latency
threshold decreases the total number of broadcast groups
quadratically (note the logarithmic scales in the figure). In
addition, the total number of brokers does not influence this re-
sult for higher broker numbers. This confirms the effectiveness
of our threshold-based approach as fewer broadcast groups
mean that, on average, each group comprises more members.

Figure 3 shows that the number of leader and member join
operations needed to reach a stable state scales linearly with
the number of brokers—also for different latency thresholds.

7https://github.com/eclipse/paho.mqtt.java
8https://simplemaps.com/data/world-cities
9https://github.com/MoeweX/broadcast-group-simulation



10
1

10
2

Latency Threshold [ms]

10
0

10
1

10
2

N
um

be
r o

f B
ro

ad
ca

st
 G

ro
up

s

0

1200

2400

3600

4800

6000

7200

8400

9600

10800

12000

N
um

be
r o

f B
ro

ke
rs

Figure 2. Latency thresholds control the amount of broadcast groups
(logarithmic scale).

2000 4000 6000 8000 10000 12000
Number of Brokers

0

10000

20000

30000

40000

50000

60000

N
um

be
r o

f J
oi

ns

Leader Joins
Member Joins

0
10
20
30
40
50
60
70
80
90
100
150
200
250
300
350
400

La
te

nc
y 

Th
re

sh
ol

d 
[m

s]

Figure 3. The number of operations scales linearly with the number of
brokers.

The minimum number of messages10 required to negotiate
a leader join is three (join request with LCM, join reply
with proposal who becomes new leader, actual leader join
message). The minimum number of messages for a member
join is two (member notification message, actual member
join message). In our simulation, on average 1.04 member
notification messages have been sent for every member join
message, as members only join if the connection to the new
leader has a latency below the threshold. As the number of
messages increases linearly with the number of operations, the
required message overhead of the group formation is O(N).

Infrastructure changes such as the addition or removal of a
broker also trigger the group formation process. However, it
is considerably shorter than the initial one and depends on the
extent of change. In the best case, a new broker simply joins
another leader while all other brokers are not affected.

Note, that for the group formation process, brokers rely
on latency measurements to other brokers. The number of

10More messages might be required if messages are acknowledged or a
different negotiation protocol is used.

required measurements depends on the number of brokers
and leaders: If N is the total number of brokers, the process
involves (O(N−L+L2)) measurements; N−L measurements
from members to their leaders, and L2 measurements between
leaders. If the latency threshold is set to 0, every broker would
be a leader (similar to cloud relay) so N = L. This leads to
O(N −N +N2) = O(N2) measurements in the worst case.
If the latency threshold is set to a very large value, all brokers
end up in the same broadcast group (similar to global flooding)
so L = 1. This leads to O(N−1+12) = O(N) measurements
in the best case. When using a latency threshold that results
in a middleground solution, e.g, L =

√
N , the number of

measurements is still O(N − L + (
√
N)2) = O(N). The

number of needed latency measurements can be additionally
reduced by partitioning leader announcements as explained in
Section II-C.

B. Experiment: Effectiveness of Broadcast Groups

To compare latency and excess data dissemination between
communication strategies, we ran experiments based on an IoV
scenario. Unfortunately, existing solutions are not applicable
to our envisaged environment. Here, pub/sub systems must
have an acceptable overhead that allows them to scale to
deployments comprising thousands of edge brokers. In addi-
tion, they must handle end devices that frequently update sub-
scriptions, and interoperate with other broker implementations.
We therefore refrain from evaluating these related solutions
experimentally (cf. Related Work for details) and compare the
different communication strategies, instead. To this end, we
used an emulated infrastructure with multiple broker instances
as fog computing testbed [11].
Scenario: Our scenario is a simplified IoV use case with
three types of clients (end devices): cars, monitoring equip-
ment, and traffic authorities. For improved driving safety, cars
exchange telemetry data with other cars so that they know
when cars brake or change lanes. The monitoring equipment,
e.g., a camera, collects traffic information that it sends to the
traffic authority for processing. The traffic authority could use
the collected data to inform cars about events such as traffic
jams or accidents; we refrained from doing so to keep the use
case simple.
Evaluation Setup: Our evaluation setup can be seen in
Figure 4. We deployed three of our proof-of-concept brokers
at the edge, to which a total of four end devices (three cars
and one piece of monitoring equipment) connected. Because
our brokers still support the MQTT protocol, we can use the
standard Mosquitto command line clients for communication.
As cloud broker, we deployed a vanilla Mosquitto MQTT
broker; every other system that supports the MQTT protocol
could be used as well.
Infrastructure and Deployment: As we do not have access
to a fog computing infrastructure with the characteristics
shown in Figure 4 available, we used MockFog [11] to emulate
such an infrastructure. Based on an infrastructure definition,
MockFog deploys one virtual machine for each component,
configures networking delays, and deploys the brokers and



Edge 
Broker 1

Edge 
Broker 2

Edge 
Broker 3

Cloud 
Broker

6ms 3ms

30ms
27ms

Car 1 Car 2 Car 3

Traffic 
Authority

24ms

2ms 2ms 2ms

12ms

Monitoring 
Equipment

Figure 4. Evaluation setup.

clients. For our evaluation, MockFog used Amazon EC211 with
t3.small instances for brokers and t3.nano instances for
end devices.
Experiment Execution: For each of the three communica-
tion strategies, global flooding, broadcast groups, and cloud re-
lay, we ran the same 15-minute workload: For the exchange of
telemetry data, each car publishes 20 bytes of data to a unique
topic 20 times per second, e.g., Car 1 publishes to the topic
/car-telemetry/realtime/1. At the same time, all cars subscribe
to the wildcard topic /car-telemetry/realtime/+ which matches
the individual topics. The traffic authority collects data from
monitoring equipment by creating a subscription to the topic
/traffic-control/monitoring/#. The monitoring equipment pub-
lishes its data (1000 bytes, once per second) to the (unique)
topic /traffic-control/monitoring/1.

All experiments were run with our proof-of-concept pro-
totype. For the global flooding strategy, we set up MQTT
bridging [12] between all brokers, which is supported by
Moquette out of the box. As a consequence, each message
received by one broker is forwarded to every other broker.
For the group formation, we used a latency threshold of 5 ms.
This leads to two broadcast groups, one that comprises only
Edge Broker 1, and one that comprises Edge Broker 2 and
Edge Broker 3. For cloud relay, we set the latency threshold
to 0 which leads, in our setup, to three broadcast groups that
each comprise a single edge broker.

In the following, we first discuss the message delivery
latency measured for each strategy (Section IV-C), before
discussing the amount of excess data that is produced by each
strategy (Section IV-D). Note that due to space constraints, we
did not include experiment results on all aspects of the group
formation process, e.g., members leaving their broadcast group
when the measured latency exceeds the latency threshold.
However, from the experiments, it already becomes clear that
the group formation works as designed.

C. Message Delivery Latency

The message delivery latency (MDL) for each individual
message is defined as MDL = treceived − tsend, with t denoting
the send and receive timestamp measured at each client. Since

11https://aws.amazon.com/ec2/

4 5 6 7 8 9 10 11 12
Message Delivery Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

End-Device
Car 1
Car 2
Car 3
Communication Strategy
Broadcast Groups
Global Flooding

Figure 5. Car Telemetry MDL for global flooding and for broadcast groups.

Amazon EC2 machines have highly synchronized clocks12,
clock drift is negligible and can, thus, be disregarded for our
experiments.

Considering the topology, the global flooding and broadcast
group MDL should be similar. For both strategies, we expect
50% of the messages received by Car 2 and Car 3 to have
an MDL of about 4 ms, as the corresponding messages can be
matched at Edge Broker 3 directly and the one-way latency
between Edge Broker 3 and each car is 2 ms. The remaining
50% of the messages received by Car 2 and Car 3, as well
as all messages received by Car 1, should have an MDL of
about 7 ms, as the messages additionally need to be sent via
the link between Edge Broker 2 and Edge Broker 3. Figure 5
shows the experiment results which confirm our expectation.
In particular, there is a clearly visible step when the cumulative
distribution reaches 50% for Car 1 and Car 2, which confirms
the general performance of broadcast groups13.

For the cloud relay strategy, we expect 50% of the messages
received by Car 2 and Car 3 to have a similar MDL as
in the global flooding or broadcast group experiment. The
remaining 50% of their received messages, as well as all
messages received by Car 1, should be routed via the cloud,
which leads to an MDL of 55 ms or higher. Figure 6 shows
that the used implementation achieves this latency for some
messages. However, this experiment also reveals that our setup
with the Eclipse Paho MQTT client library, which is used
by the Moquette edge brokers to create subscriptions at the
Mosquitto cloud broker, negatively influences MDL (visible
by the long-tail)14.

All messages received by the traffic authority, i.e., all
messages published by the monitoring equipment, should have

12https://aws.amazon.com/about-aws/whats-new/2017/11/
introducing-the-amazon-time-sync-service/

13The latency values are not exactly 4 ms (and 7 ms), as processing the
messages on each edge broker also requires some time.

14This is not visible in any other experiment, as only here a subscription
created from one broker (Edge Broker 2 and 3) at another broker (Cloud
Broker) matches incoming messages. Intra-group communication is done via
broadcasting which does not depend on subscriptions.



0 20 40 60 80 100 120 140 160
Message Delivery Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

End-Device
Car 1
Car 2
Car 3
Communication Strategy
Cloud Relay

Figure 6. Car Telemetry MDL for cloud relay (note, lines for Car 1 and Car
2 overlap).

44 45 46 47 48 49 50
Message Delivery Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

Communication Strategy
Broadcast Groups
Global Flooding
Cloud Relay

Figure 7. Monitoring data MDL.

a latency of 44 ms. Figure 7 shows that, considering the
mentioned overheads, the results match our expectation. Note
that our forwarding implementation seems to have a better
performance than Moquette’s bridging which is used by the
global flooding strategy.

In conclusion, broadcast groups can achieve a communica-
tion latency close to the one of global flooding. Depending
on the workload, this can be significantly better than the
communication latency achieved by cloud relay.

D. Excess Data

In the following, we evaluate the impact of each com-
munication strategy on excess data dissemination. For that,
we logged each message processed by every broker and
determined the amount of correct and redundant messages.
Correct messages are messages processed by brokers that
either have a matching subscriber or to which the publishing
client is connected. Redundant messages are all other messages
processed by brokers; these messages have to be discarded and
therefore count as excess data.

Table I
EXCESS DATA FOR EACH COMMUNICATION STRATEGY: CAR TELEMETRY

Global Flooding Cloud Relay Broadcast Groups

Correct Msgs. 107948 107944 107944
Redundant Msgs. 107948 53972 53972

Excess Data 50% 33% 33%

Table II
EXCESS DATA FOR EACH COMMUNICATION STRATEGY: MONITORING DATA

Global Flooding Cloud Relay Broadcast Groups

Correct Msgs. 1798 1798 1798
Redundant Msgs. 1798 0 0

Excess Data 50% 0% 0%

Table I and Table II show the amount of correct and
redundant messages, as well as the share of excess data, for
each communication strategy and both message flows. The car
telemetry messages have to be processed by Edge Broker 2
and Edge Broker 3 only; thus, all messages processed by Edge
Broker 1 and Cloud Broker are excess data. The monitoring
messages have to be processed by Edge Broker 1 and Cloud
Broker only; thus, all messages processed by Edge Broker 2
and Edge Broker 3 are excess data. While we used the same
workload for all three communication strategies, the respective
message numbers are not exactly identical due to minimal
runtime variations of our publishing clients.

In conclusion, global flooding produces the largest amount
of excess data, while broadcast groups achieves a similar
efficiency as cloud relay. Overall we can see that broadcast
groups achieves results in terms of communication latency and
excess data that can be considered the best of both worlds,
effectively balancing this tradeoff.

V. RELATED WORK

In a fog environment, many approaches for distributed
pub/sub system are a poor fit. For example, [13], [14] are
tailored for the cloud and thus assume LAN connectivity
between machines. Therefore, they cannot cope with geo-
distribution. Furthermore, with approaches building on dis-
tributed hash tables (e.g., [15]–[17]) or rendezvous nodes
(e.g., [18]), messages might be routed across any node even
though the node might not have access to sufficient compute
or networking resources. Particularly in the fog, this is not
acceptable due to the heterogeneity of machines, as well as
partly unstable and relatively slow network connections. There
is, however, a number of approaches that also aim to make
pub/sub systems ready for an environment such as the fog.

Rausch et al. [3] propose a fog-enabled geo-distributed
broker. In contrast to our work, they aim to provide optimal
latency for all communication. To this end, they use a cen-
tralized cloud service that continuously orchestrates brokers
and migrates MQTT clients. The cloud service, however,
needs a comprehensive global view on inter-node latency, edge



brokers, clients, and subscriptions. Keeping this view up to
date can be challenging in volatile deployments. Moreover,
migration might lead to message loss which is especially
problematic in scenarios with mobile end devices.

An et al. [4] propose PubSubCoord which, at first glance,
looks very similar to our solution as they also group local
brokers. There are, however, two key differences. First, their
local groups are based on network segments rather than inter-
machine latency; because we can change the latency threshold
that controls group formation, we can manage the latency and
excess data dissemination tradeoff. Second, coordination and
message exchange between local groups relies on Zookeeper
and a custom broker implementation, while our approach
integrates with arbitrary vanilla MQTT brokers which makes
it possible to use the best solution for any situation.

Cao and Singh [19] propose MEDYM and H-MEDYM.
In MEDYM, brokers need to know about all other brokers
in the network and the sum of their subscriptions, which is
infeasible in large deployments. To circumvent this limitation,
H-MEDYM also proposes to create broker groups. In each
group a so-called matcher broker handles the communication
with the matchers of other groups. Still, in H-MEDYM,
each matcher needs be aware of subscriptions from all other
matchers which is infeasible in scenarios with a high amount
of frequently updated subscriptions, especially in global broker
deployments.

Kawaguchi and Bandai [5] propose a distributed broker
system that supports heterogeneous broker resources. For this,
they rely on a custom topic structure that embeds geographic
information, so each message is associated with a certain area.
As every broker is responsible for exactly one area, it only has
to process the messages associated with its area. Changing area
sizes can be used to control the broker load, but the approach
only works for location-dependent data.

Shun et al. [8] propose a topic-based fog computing ar-
chitecture which they use for the exchange of semantically
enhanced IoV data. In contrast to our approach, their fog
nodes have to create subscriptions at all other fog nodes which
limits scalability and potentially overloads brokers with few
resources.

Banno et al. [20] propose to interconnect heterogeneous
and distributed MQTT brokers through an additional mid-
dleware layer between brokers and end devices. This layer
also takes care of distributing messages between brokers
based on customizable routing strategies. For their paper, they
only implemented flooding, but we assume that adding our
broadcast group strategy is possible as well. Unfortunately,
their source code is not publicly available so that we could not
verify this. In contrast to all other related work, this approach
is also the only one that is interoperable with existing setups.

VI. DISCUSSION

In this section, we discuss limitations and design choices.
First, the group formation process (Section II-C) optimizes
locally, but therefore may not lead to a globally optimized
topology. For example, two very well-connected brokers that

exchange large amounts of data might end up in separate
broadcast groups, and therefore have to communicate via the
cloud. As future work, we plan to make brokers more aware
of their environment and message flows. For example, brokers
could detect that a majority of relevant messages originate at
a broker from another broadcast group, and update their mem-
bership accordingly. Another exciting topic for future work is
not to use a global, and fixed latency threshold, but rather to
let each broadcast group define their own threshold based on
local conditions. Then, broadcast groups that can tolerate a
higher amount of excess data could increase their threshold
to improve latency, while overloaded broadcast groups can
decrease their threshold to reduce excess data.

Second, we chose flooding for intra-group communication
because it offers the lowest communication latency and copes
well with mobile subscribers; excess data remains manageable
as long as broadcast groups do not become too large. However,
depending on the infrastructure environment and workload,
it is certainly possible to use other strategies that, while not
being an option when distributing messages across “the entire
fog”, are feasible for machines in the same broadcast group.
Note, however, that all strategies without flooding involve a
warmup phase, i.e., a subscription to a topic formerly unknown
to the broker cannot be served immediately as, for example,
the broker first has to tell other brokers about the subscription.
Depending on the use case, this might not be acceptable.

Third, if needed, our approach can also be used to mimic the
two other strategies used in the evaluation. To flood messages
to all brokers, the latency threshold can be set to a very large
value so that all brokers end up in the same broadcast group.
To implement the cloud relay strategy, the latency threshold
can be set to zero so that every broker creates its own broadcast
group. This observation also emphasizes that our approach
indeed provides a way to manage the tradeoff between excess
data and latency.

VII. CONCLUSION

In this paper, we described the latency and excess data dis-
semination tradeoff that needs to be taken into account by geo-
distributed pub/sub systems running in fog environments. We
proposed a solution that relies on dynamically sized broadcast
groups to manage this tradeoff. Broadcast groups split the set
of edge brokers into well connected groups which use flooding
for intra-group communication and a cloud relay for inter-
group communication. This minimizes communication latency
and copes well with frequently updated subscriptions and
mobile end devices. We evaluated our approach through simu-
lation and experiments. For the latter, we used an emulated fog
infrastructure testbed and compared results to cloud relay and
global flooding. The results confirm the effectiveness of our
approach and that involved overheads remain manageable—
this even applies to global deployments with thousands of
individual broker instances.

REFERENCES

[1] K. Paridel, E. Bainomugisha, Y. Vanrompay, Y. Berbers, and W. De,
“Middleware for the internet of things, design goals and challenges,”



EASST Context-Aware Adaptation Mechanisms for Pervasive and Ubiq-
uitous Services, vol. 28, 2010.

[2] D. Bermbach, F. Pallas, D. G. Pérez, P. Plebani, M. Anderson, R. Kat,
and S. Tai, “A research perspective on fog computing,” in 2nd Workshop
on IoT Systems Provisioning & Management for Context-Aware Smart
Cities, vol. 10797. Springer, 2018, pp. 198–210.

[3] T. Rausch, S. Nastic, and S. Dustdar, “EMMA: Distributed QoS-aware
MQTT middleware for edge computing applications,” in 2018 IEEE Int.
Conf. on Cloud Engineering. IEEE, 2018, pp. 191–197.

[4] K. An, A. Gokhale, S. Tambe, and T. Kuroda, “Wide area network-
scale discovery and data dissemination in data-centric publish/subscribe
systems,” in Proc. of the Posters and Demos Session of the 16th Int.
Middleware Conf. ACM Press, 2015, pp. 1–2.

[5] R. Kawaguchi and M. Bandai, “A distributed MQTT broker system for
location-based IoT applications,” in 2019 IEEE Int. Conf. on Consumer
Electronics (ICCE). IEEE, 2019, pp. 1–4.

[6] P. Bellavista, A. Corradi, and A. Reale, “Quality of service in wide scale
publish-subscribe systems,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, pp. 1591–1616, 2014.

[7] D. Frey and G.-C. Roman, “Context-aware publish subscribe in mobile
ad hoc networks,” in Coordination Models and Languages, A. L.
Murphy and J. Vitek, Eds. Springer, 2007, vol. 4467, pp. 37–55.

[8] Sejin Shun, Sangjin Shin, Seungmin Seo, Sungkwang Eom, Jooik
Jung, and Kyong-Ho Lee, “A pub/sub-based fog computing architecture
for internet-of-vehicles,” 2016 IEEE Int. Conf. on Cloud Computing
Technology and Science, pp. 90–93, 2016.

[9] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana,
V. Gutierrez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, and
D. Pfisterer, “SmartSantander: IoT experimentation over a smart city
testbed,” Computer Networks, vol. 61, pp. 217–238, 2014.

[10] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A serverless
real-time data analytics platform for edge computing,” IEEE Internet
Computing, vol. 21, no. 4, pp. 64–71, 2017.

[11] J. Hasenburg, M. Grambow, E. Grunewald, S. Huk, and D. Bermbach,

“MockFog: Emulating fog computing infrastructure in the cloud,” in
First IEEE Int. Conf. on Fog Computing. IEEE, 2019, p. 9.

[12] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “MQTT version 5.0.”
OASIS Standard. https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-
v5.0-os.html, accessed 06/09/2019, 2019.

[13] R. Barazzutti, P. Felber, C. Fetzer, E. Onica, J.-F. Pineau, M. Pasin,
E. Rivière, and S. Weigert, “StreamHub: A massively parallel architec-
ture for high-performance content-based publish/subscribe,” in Proc. of
the 7th ACM international Conf. on Distributed event-based systems.
ACM Press, 2013, pp. 63–74.

[14] J. Gascon-Samson, J. Kienzle, and B. Kemme, “MultiPub: Latency and
cost-aware global-scale cloud publish/subscribe,” in 2017 IEEE 37th Int.
Conf. on Distributed Computing Systems. IEEE, 2017, pp. 2075–2082.

[15] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, “Scribe: The
design of a large-scale event notification infrastructure,” in Networked
Group Communication, J. Crowcroft and M. Hofmann, Eds. Springer
Berlin Heidelberg, 2001, vol. 2233, pp. 30–43.

[16] Y. Zhao, K. Kim, and N. Venkatasubramanian, “DYNATOPS: A dy-
namic topic-based publish/subscribe architecture,” in Proc. of the 7th
ACM Int. Conf. on Distributed Event-based Systems. ACM, 2013, pp.
75 – 86.

[17] R. Banno, S. Takeuchi, M. Takemoto, T. Kawano, T. Kambayashi, and
M. Matsuo, “Designing overlay networks for handling exhaust data in
a distributed topic-based pub/sub architecture,” Journal of Information
Processing, vol. 23, no. 2, pp. 105–116, 2015.

[18] P. Pietzuch and J. Bacon, “Hermes: a distributed event-based middleware
architecture,” in Proc. 22nd Int. Conf. on Distributed Computing Systems
Workshops. IEEE, 2002, pp. 611–618.

[19] F. Cao and J. P. Singh, “MEDYM: Match-early with dynamic multicast
for content-based publish-subscribe networks,” in Middleware 2005,
G. Alonso, Ed. Springer Berlin Heidelberg, 2005, vol. 3790, pp. 292–
313.

[20] R. Banno, J. Sun, M. Fujita, S. Takeuchi, and K. Shudo, “Dissemination
of edge-heavy data on heterogeneous MQTT brokers,” in 2017 IEEE 6th
Int. Conf. on Cloud Networking. IEEE, 2017, pp. 1–7.


