
tinyFaaS: A Lightweight FaaS Platform for Edge
Environments

Tobias Pfandzelter, David Bermbach
Technische Universität Berlin & Einstein Center Digital Future

Mobile Cloud Computing Research Group
{tp,db}@mcc.tu-berlin.de

Abstract—The Function-as-a-Service (FaaS) model is a great
fit for data and event processing in the Internet of Things (IoT).
Sending all data to a cloud-based FaaS platform, however, may
cause performance and privacy issues. While these issues could
be mitigated using edge computing, existing FaaS approaches,
designed for the cloud, are too heavyweight to run on small,
constrained edge nodes.

In this paper, we propose tinyFaaS, a new FaaS system
that is specifically designed for edge environments and their
unique challenges. Our platform is lightweight enough to run on
low-performance single machine edge nodes, provides a CoAP
endpoint to support communication with low-power devices,
and uses Docker containers to isolate tenants. We evaluate
tinyFaaS through a proof-of-concept implementation that we
benchmark and compare to state-of-the-art FaaS platforms. For
IoT processing scenarios, we find that tinyFaaS outperforms
existing systems by at least an order of magnitude.

Index Terms—Serverless, FaaS, Edge Computing, IoT

I. INTRODUCTION

Function-as-a-Service (FaaS) is a cutting-edge service
model that has developed with the current advancement of
cloud computing. Cloud functions allow custom code to be
executed in response to an event. In most cases, developers
need only worry about their actual code, as event queuing,
underlying infrastructure, dynamic scaling, and dispatching are
all handled by the cloud provider [1], [2].

This scalable and flexible event-based programming model
is a great fit for IoT event and data processing. Consider as an
example a connected button and lightbulb. When the button is
pressed it sends an event to a function in the cloud which in
turn sends a command to the lamp to turn on the light. The
three components are easily connected and only the actual
function code would need to be provided. Thanks to managed
FaaS, this approach also scales from two devices to thousands
of devices without any additional configuration.

Current FaaS platforms do provide these benefits for the
IoT, however, using them in this way is inefficient. Sending
all events and data to the cloud for processing leads to a
high load on the network and high response latency [3],
[4]. It is much more efficient to process IoT data closer to
their service consumers such as our lightbulb and button,
as is the idea of fog computing [5], [6]. Positioned in the
same network, our button may send its event to an edge

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 415899119.

function placed, for example, on a common gateway. This
also introduces additional transparency about data movement
within the network and alleviates some security concerns about
cloud computing [4], [7].

Currently, however, there are no open FaaS platforms that
are built specifically for IoT data processing at the edge.
State-of-the-art platforms are instead built for powerful cloud
hardware, for web-based services, or are proprietary software
that is not extensible.

We therefore make the following contributions in this paper:
1) We discuss the unique challenges of IoT data processing

and edge computing and derive requirements for an edge
FaaS platform (Section II)

2) We introduce tinyFaaS, a novel FaaS platform architec-
ture that addresses the requirements we have identified
(Section III)

3) We evaluate tinyFaaS through a proof-of-concept proto-
type and a number of experiments in which we compare
it to state-of-the-art FaaS platforms, namely Kubeless
and Lean OpenWhisk (Section IV)

II. CHALLENGES FOR AN EDGE-BASED FAAS PLATFORM

We have motivated the need for FaaS at the network edge,
closer to service consumers such as connected sensors and
actuators. There are some basic requirements to consider that
apply to all FaaS platforms: At its core, a FaaS platform
should be able to run custom application code in response
to a network request. Ideally, it should also be able to respond
to that request with a result from the application. Moreover,
the platform must be able to provide an appropriate runtime
environment for that application and manage request proxy-
ing, code deployment, and function management on its own.
Furthermore, it should support multi-tenancy and multiple
functions running concurrently while ensuring their isolation
from each other. Finally, a FaaS platform needs to scale as
needed, i.e., it should have the ability to process many requests
in parallel [1].

Beyond these, edge computing comes with additional chal-
lenges that an edge FaaS platform needs to handle. In this
section, we discuss these challenges and derive requirements.

A. Emphasizing Resource Efficiency

In their capabilities, edge nodes can range from low-
powered single-board computers to full data centers. Existing



FaaS platforms mainly target these larger data centers or
groups of servers. We consider instead the more common
constrained edge nodes such as single-board computers or
single servers. While they have much less computational
power than a complete data center, they are far more cost-
efficient in the large quantities required for edge computing
and suffice for many use cases [4]. In such constrained
environments, efficient resource allocation is a key concern:
The platform itself should introduce as little overhead as
possible and leave most resources to application code. And
among different applications, the limited resources such as
memory and CPU time need to be dynamically shared instead
of statically allocated to maximize utilization.

Another characteristic that distinguishes these low-power
edge nodes is that they are monolithic compared to cloud
applications that need to scale across several cloud machines.
While this restricts scalability and fault-tolerance, it dramati-
cally simplifies node management and limits the overhead of
platform management. Some components such as a dedicated
load balancer to distribute requests across several worker nodes
are simply not needed. While certainly possible, scaling a FaaS
platform across multiple edge locations is unlikely provide
significant latency advantages over processing data and events
in the cloud. This means that an edge-focused design of a
FaaS platform should carefully consider which components
are actually needed and which are not to minimize overheads.

B. Focus on IoT Applications

One of the features that makes traditional FaaS platform
so easy to use are the variety of “triggers” that can be
used to invoke functions. For example, AWS Lambda can
execute functions in response to cloud infrastructure mon-
itoring events, cloud storage file changes, data streams, or
even incoming e-mails [1]. These triggers, however, all require
custom protocols and components, which is not feasible in
edge environments where device heterogeneity and a lack of
resources can only be addressed through interoperable, stan-
dardized messaging protocols instead of exposing a multitude
of trigger endpoints. While HTTP is a popular choice for
web applications, it often introduces an additional overhead
compared to alternative protocols, especially for constrained
devices. Latency, in particular, is a critical factor in the IoT
and one of the main reasons to process data at the edge rather
than the cloud. Alternative messaging protocols such as MQTT
or CoAP can help to reduce latency and tend to be far more
resource efficient [8], [9].

Therefore, an edge FaaS platform should natively support
such IoT messaging protocols yet can do without custom
triggers that are only relevant for cloud applications.

C. Extensibility

Another challenge is the heterogeneity of edge computing
nodes and applications. This may include the underlying hard-
ware, the network stack, or the available function runtimes.
Platform operators who deploy the platform in their edge
environments have to be able to integrate it within their

H
TTP

H
TTP

R
everse Proxy

Function 1 
Handler

Function N 
Handler

…

Docker Daemon

Management Service

HTTP

HTTP

Client

Client

Client

Client

…

CoAP Request

CoAP Request

CoAP Request

CoAP Request

Docker

tinyFaaS Host

Fig. 1. tinyFaaS Architecture

existing deployments. This may require the platform to be
modified slightly to be able run on different hardware [4].

Furthermore, the platform needs to be extensible as new IoT
and cloud technologies are developed at a rapid pace. It should
be possible to extend the platform to support new technology
without being dependent on cloud service providers to make a
new technology available. This also promotes a wider variety
of available technologies that users may choose from.

Therefore, a FaaS platform for the edge has to be open
instead of proprietary. In that sense, it is not only important
that source code of any implementation is free and publicly
available, but also that the platform itself is designed to use
interchangeable components and open protocols.

III. SYSTEM DESIGN

Based on the requirements for FaaS platforms on the edge
that we identified in Section II, we have developed tinyFaaS,
a FaaS platform that is built from the ground up for edge
environments.

In this section we will present the architecture of tinyFaaS,
which is shown in Figure 1. Its main components are a reverse
proxy that acts as a CoAP proxy and load balancer, function
handlers that execute the application code, and a management
service to supervise the other components.

As each of these components communicates using standard
web protocols, they are easily interchangeable as well, which
further increases extensibility. For example, the reverse proxy,
which accepts incoming CoAP connections, could easily be
replaced with an HTTP proxy for less latency-sensitive appli-
cations or to integrate it into legacy systems. While tinyFaaS
is designed to run on a single node, it is also possible to
integrate multiple nodes in a common middleware or through
an external load balancer by extending the management service
or reverse proxy.



H
TTP Server

Function Code

Function Code

Function Code

Function Code

…

Function Handler

HTTP Request

HTTP Request

HTTP Request

HTTP Request

…

Fig. 2. Components of the Function Handler

A. Reverse Proxy

The reverse proxy accepts incoming CoAP connections and
proxies them to the function handlers. For each function, a
CoAP resource is registered in the reverse proxy and requests
to that resource are treated as a call to the corresponding
function. When a message reaches the CoAP endpoint, the
reverse proxy selects one of the function handlers to process
this request. The reverse proxy then sends an HTTP request,
possibly with some meta-information or data, to the HTTP
proxy in the selected function handler.

As we have discussed in Section II-B, a FaaS platform for
the edge should natively support messaging protocols that are
used for machine-to-machine communication and fit the IoT
use case as well. We decided to use CoAP as the messaging
protocol for tinyFaaS for several reasons. First, CoAP, which
is short for Constrained Application Protocol follows the
client/server paradigm in the style of HTTP, compared to the
publish/subscribe approach that MQTT takes. This fits our
use case as we expect clients such as IoT devices to send
requests to the server that hosts tinyFaaS without the need for
a common message broker. Second, CoAP is very efficient and
lightweight. All other factors being equal, it introduces much
lower latency overheads and can sustain higher throughput
levels compared to HTTP and MQTT. These lower resource
needs are mainly due to CoAP using UDP at the transport
layer. As TCP is connection-oriented, it introduces a lot
of overhead; UDP, in contrast, does not use a controlled
connection between the two communicating parties. This not
only greatly reduces how much processing is needed for each
CoAP packet but also reduces network bandwidth usage [8],
[9].

B. Function Handlers

The function handlers are the main part of tinyFaaS. Each
function handler is a separate Docker container. This container
contains both a runtime for the programming language that the
function is written in and some boilerplate code to facilitate
calling it from the reverse proxy. As shown in Figure 2, the
container also includes an HTTP server that accepts incoming

requests from the reverse proxy, executes the function with the
data provided by the request and returns a result. While the
reverse proxy uses CoAP for external communication, HTTP
is used internally within tinyFaaS. Using an HTTP server for
communication between the reverse proxy and the function
handlers makes it very simple to add new function runtimes,
as most modern runtimes support some form of HTTP server
out of the box with standard libraries, which is not necessarily
the case for CoAP. Using HTTP here, therefore, improves
extensibility. As the reverse proxy and function handlers run
on the same physical host and are connected directly with
a virtual network, the communication overhead is negligible.
Furthermore, the connection can be reused for every (internal)
request.

Each function handler can accept an arbitrary number of
concurrent incoming requests. Consequently, requests within
one container are isolated from each other only on an ap-
plication level by using threads, yet not on an operating
system level. The trust boundary is set at a function level
rather than at request level. While creating a new Docker
container for each request would increase isolation, it results in
a considerably higher performance overhead and less efficient
resource allocation. We believe that this is “good enough” in
terms of a trust model.

Consider the following example: A function developer D
develops and deploys a function which is used by users U1
and U2. In this scenario, neither U1 nor U2 can directly access
each other’s data without involving D. D, however, needs to
be trusted by both users anyhow as he could leak tenant data
in other ways as well. This only leaves the question of a
buggy function that leaks information which, however, cannot
be properly exploited by either user as such a bug would go
in both directions. Furthermore, in a stateless programming
model, this is also very likely to materialize as a malfunction.

Overall, we believe that this suffices for our purposes;
there may, however, be scenarios where more isolation at
the cost of performance is needed – these can simply be
addressed by routing requests of the respective user (who
is unlikely to attack himself) to a dedicated container. Nev-
ertheless, this means that applications that run on tinyFaaS
must be developed for safe memory access so as not to
interfere with itself when called concurrently. Across different
functions and, by extension, tenants, tinyFaaS asserts isolation
using Docker containers. Through isolated runtimes, different
function handlers cannot access other function’s memory or
files and the virtual networks prevent direct calls between
them. This ensures that no maliciously acting function can
interfere with other functions.

While Docker containers only introduce a small perfor-
mance penalty, they dramatically simplify deployment of
functions as the corresponding handlers and dedicated virtual
networks can easily be created in an isolated fashion by the
management service.



C. Management Service

The management service is responsible for creating new
functions within the platform. Developers who want to deploy
a new function can send it the management service’ HTTP
endpoint. The service then creates the containers for the
function handlers, registers a CoAP resource in the reverse
proxy, and connects all handlers with the reverse proxy on
a Docker virtual network so that they can communicate. In a
similar manner, functions may also be updated or deleted. This
allows functions on tinyFaaS to be reconfigured at runtime,
which is a key feature of FaaS platforms.

Furthermore, having a single point of entry also enables
multi-tenancy as the management service can take care of user
authentication when creating or modifying functions. While
it would be possible to integrate this into the reverse proxy,
as we tried in an earlier prototype, having the management
service as a separate component has two advantages. First, it
keeps the reverse proxy as slim as possible, making it more
resource efficient. Second, having separate components allows
us to replace individual components. For instance, it is possible
to configure tinyFaaS by sending HTTP requests to the host’s
Docker daemon and the existing tinyFaaS reverse proxy. This
allows us to easily replace the management service, e.g., with
an external or distributed service which would add remote
management capabilities to our system.

IV. EVALUATION

We evaluate our approach through (i) a proof-of-concept
implementation and (ii) a number of experiments in which we
assess performance overheads of tinyFaaS and compare it to
two alternative approaches from related work.

A. Proof-of-Concept Implementation

As described, tinyFaaS comprises three main components:
the reverse proxy, the function handlers, and the management
service. For simplicity, in our proof-of-concept, only a Node.js
v8 runtime is supported. The function handlers are Docker
containers running a Node.js script with an HTTP endpoint
that accepts any incoming requests using the http module.
The actual function code is loaded as a module to that script
and its exposed function is executed for each incoming request.

The management service is a Python3 application that uses
docker-py to manage the Docker containers, images, and
networks needed for tinyFaaS. It exposes an HTTP endpoint
for us to add new functions to tinyFaaS. When a new function
is created, the management service creates a configurable
number of Docker containers that each contains a function
handler for the function. For each function, it also creates a
dedicated Docker network to which it attaches all function
handlers and the reverse proxy.

We implemented the reverse proxy in Go, using the
go-coap library. The reverse proxy accepts incoming HTTP
requests from the management service to create a new CoAP
resource with a given identifier and given IP addresses of
existing Docker containers on the tinyFaaS host that incoming
CoAP requests should be forwarded to. The small binary that

the reverse proxy compiles to is then also run in a Docker
container. Our implementation is available as open-source
software1.

B. Experiment Setup

In our experiments, we compared tinyFaaS to both an
existing edge FaaS platform and a high-performance cloud
FaaS platform. We also assessed the tinyFaaS overhead by
comparing its performance to the performance of a native,
non-dockerized Node.js deployment on the same machines.
This native implementation also uses a CoAP endpoint, which
should help us understand how the internal design of tinyFaaS
affects performance rather than the use of a more efficient
communication protocol. For this, we attached a node-coap
server. As an edge FaaS platform, we use Lean OpenWhisk
which is a deployment option of the OpenWhisk platform
that targets resource constrained systems2. For the cloud FaaS
platform, we use Kubeless which is based on Kubernetes3

and has recently been shown to be one of the most efficient
open-source FaaS platforms. As such it is a good candidate
for edge deployment. Furthermore, as it has been shown to
be more efficient than OpenFaaS or Knative, we refrain from
benchmarking these platforms as results are fairly predictable
based on the experiments of [10]. For the Kubeless experi-
ments, we used a minikube4 installation. For the workload,
we implemented a custom JavaScript function that computes
the prime numbers between 1 and 1,000 using the Sieve of
Eratosthenes [11] algorithm and deployed it on tinyFaaS,
Kubeless, Lean OpenWhisk, and natively.

As we target edge environments, we use single node de-
ployments. We select a Raspberry Pi 3 B+ and an AWS
EC2 m5a.large virtual machine as our hardware to test the
performance both on a very constrained single-board computer
and a more powerful server, in this case the moderately
powerful general-purpose cloud server available on AWS
EC2 that is comparable to a single-node edge server. The
Raspberry Pi 3 B+ has a quad-core 1.4GHz processor, 1GB
of memory, and a 300 Mbps Ethernet connection running the
recommended Raspbian Buster distribution5. The AWS EC2
m5a.large instance provides two vCPUs of the AMD EPYC
7000 series, 8GB of memory, and up to 10Gbps of bandwidth6.

For the workload generation, we implemented a custom
benchmarking tool on Node.js that supports both CoAP and
HTTPS, which is necessary when comparing tinyFaaS to
Lean OpenWhisk and Kubeless, which both only support
HTTPS triggers. While comparing latency measurements may
be inaccurate based on the different implementations of the
native Node.js https and the third-party node-coap libraries,
we expect the differences to be in favor of https, i.e., in favor
of Lean OpenWhisk and Kubeless. The benchmarking tool

1https://github.com/OpenFogStack/tinyFaaS
2https://www.github.com/kpavel/incubator-openwhisk/tree/lean
3https://kubeless.io/
4https://minikube.sigs.k8s.io/
5https://www.adafruit.com/product/3775
6https://aws.amazon.com/ec2/instance-types/m5/



itself follows a closed workload model [12], [13] and issues
a sequence of calls to a target endpoint using a configurable
number of client threads as in YCSB [14]. For the Raspberry
Pi experiments, we run the benchmarking client on a MacBook
Air and connect both machines with an Ethernet uplink. For
the cloud server benchmark, we use an AWS EC2 m5a.xlarge
server that is more powerful than the system under test. Both
cloud servers are located in the same availability zone in the
EU Central AWS region. For all experiments, we asserted that
the machine running the benchmark client did not become a
bottleneck [13].

To measure the performance of the target platforms under
different load levels, we varied the number of client threads.
We used 1, 4, 16, 64, 256, and 1024 client threads for all
experiments. Each client thread issues a total of 500 operations
which each trigger one execution of our example function.
We repeat all experiments three times to assert reproducibility
of results, but only report the run with the median average
latency. All repetitions yielded comparable results.

C. Experiment Results

In our experiments, we find that the best case average
execution time for our exemplary function is 6ms on the
single-board computer and 1ms on the cloud server. These
values are taken from the test against the native Node.js
implementation using a low load of one parallel request. For
our results, we consider all operations that do not return any
response and those with a response time of more than one
second as failed.

Overhead of tinyFaaS: Figure 3 and Figure 4 show the
cumulative distribution of the respective latency measure-
ments. Please, note that this also shows the success rate for
each experiment. We show the measurements for tinyFaaS
along with each of the systems we compare it to, namely
the native Node.js implementation, Lean OpenWhisk, and
Kubeless. As each client thread in our benchmarking tool
only sends a new request when it receives a response or
the previous request times out, throughput varies across all
experiments. We achieve the highest throughput of 9,800
operations per second with the native Node.js implementation
on the Raspberry Pi with 1024 simultaneous connections. On
average, the benchmarking client issues a load of 38 operations
per second per client thread on the Raspberry Pi and 172
operations per second per client thread on the cloud server.

Figure 3 shows that performance of tinyFaaS is comparable
to the native deployment on the Raspberry Pi. Especially the
success rates being equal shows that both scale equally well
and that tinyFaaS introduces a low to acceptable overhead. At
small scale both perform equally well in terms of response
latency. In fact, in our tests with 16 simultaneous client
connections, tinyFaaS outperforms by 59%. We expect this
to be caused by the implementation of CoAP in Node.js
compared to our use of HTTP within our Node.js function
handlers. Furthermore, using multiple function handlers could
help distribute load more evenly across CPU cores which
Node.js by default does not do without explicitly designing

for multithreading. Nevertheless, for high loads the native im-
plementation is about 40% faster than tinyFaaS. As shown in
Figure 4, results look similar in our cloud server experiments.
Unlike the single-board computer experiments, these do not
show tinyFaaS outperforming the native implementation at low
load. The reason for this might be that the cloud server has
only two available CPU cores, albeit much more powerful
ones, which could limit the impact of the multithreading
advantage. On average, the native implementation is 8% faster
than tinyFaaS for small loads and 33% faster with a medium
to high load.

tinyFaaS vs. Lean OpenWhisk: Lean OpenWhisk on a
constrained system as our Raspberry Pi is much slower than
tinyFaaS and scales considerably worse. Even with just a
single concurrent connection Lean OpenWhisk is unable to
successfully respond to about two thirds of all requests. In
addition, the average latency for successful requests is almost
100 times as high as for tinyFaaS. With 256 and 1024 client
threads, Lean OpenWhisk on our single-board computer fails
completely with no successful response to any request. In
fact, we observed that the Raspberry Pi would not accept any
more input at all and needed to be reset after each test. We
presume that the high memory usage of Lean OpenWhisk led
to swapping which in turn put a high demand on the processor.
On the cloud server, results look slightly better for small
to medium loads. Lean OpenWhisk is able to successfully
respond to all requests, albeit with a latency that is 20 times
higher than that of tinyFaaS. Despite that, unlike tinyFaaS,
Lean OpenWhisk is not able to scale beyond 256 client
threads.

tinyFaaS vs. Kubeless: Kubeless scales better than Lean
OpenWhisk on the constrained Raspberry Pi but still has
about 20% error rate even under medium load. At higher
load levels, it also fails completely, i.e., does not return any
results. Response latency for Kubeless is better than Lean
OpenWhisk, yet on average still more than eight times as high
as the latency of tinyFaaS. We did expect Kubeless to be more
powerful than Lean OpenWhisk based on [10], nonetheless
Kubeless and Minikube do seem to introduce considerable
overhead. Furthermore, some part of that overhead can likely
be attributed to the use of HTTP instead of the more effi-
cient CoAP. Results for the cloud server experiments appear
comparable, with the exception of Kubeless scaling up a bit
further, which is expected given the more powerful hardware.
On average, Kubeless is 13 times slower than tinyFaaS in these
measurements.

These benchmark results reveal some important insights
about the performance of tinyFaaS. Even though our proof-
of-concept lacks more advanced features such as a more
intelligent scheduling and container management, it was able
to beat Lean OpenWhisk and Kubeless in throughput and
scalability. The performance difference is especially apparent
when running these platforms on resource constrained hard-
ware such as our Raspberry Pi. As in an edge computing
environment performance on constrained, single node devices



Lean OpenWhisk KubelessNative Node.js

System
tinyFaaS
other

Threads
1
4
16
64
256
1024

Fig. 3. Latency Measurements on Single-Board Computer

Lean OpenWhisk KubelessNative Node.js

System

tinyFaaS
other

Threads
1
4
16
64
256
1024

Fig. 4. Latency Measurements on Cloud Server

is crucial, this shows that tinyFaaS is the better fit for such
environments.

V. RELATED WORK

While Function-as-a-Service is still a relatively new
paradigm, it has found widespread interest, in particular as
a cloud service. Next to the popular AWS Lambda and
Azure Functions, a number of open-source approaches have
been developed for the cloud, e.g., the already mentioned
OpenWhisk and Kubeless.

There are also some attempts at FaaS platforms for the
edge. OpenWhisk for example has Lean OpenWhisk as a
deployment option that removes a lot of resource-intensive
components such as a Kafka queue, that are needed to scale
across multiple nodes [15]. Amazon and Microsoft have also
already started bringing their FaaS platforms closer to the edge

of the network with AWS Greengrass7 and Azure Functions
on IoT Edge8, which promise seamless integration into the
respective cloud ecosystems. To use these services, however,
developers need to render control of the edge device to the
cloud service provider.

Palade et al. [10] have published a comparison of open-
source FaaS platforms for the edge using qualitative as well
as quantitative measures. The authors also compare Open-
Whisk, yet not Lean OpenWhisk, OpenFaaS9, Kubeless, and
Knative10. They find that OpenWhisk has by far the worst
performance of the four, especially with an increased load,

7https://aws.amazon.com/greengrass
8https://docs.microsoft.com/azure/iot-edge
9https://www.openfaas.com/
10https://knative.dev/



while Kubeless provides the highest throughput and lowest
latency across all quantitative tests.

Recently, Akkus et al. [16] have published an approach
for high-performance serverless computing that is similar to
tinyFaaS conceptually. To allow for quicker communication
between functions and limit the overhead of Docker, their
system allows for concurrent execution of functions within
a single container and grouping applications that consist of
several functions. With their approach, they were able to
achieve a 43% speedup compared to OpenWhisk whereas our
results showed improvements of at least 2,000%.

Rausch et al. [17] propose and implement a serverless
platform for AI applications at the edge that combines placing
execution on edge nodes and handling data in a locality-
aware manner. Data such as AI models can be pulled from
the cloud or another edge node, while the serverless platform
abstracts from any data management by providing data prox-
ies. Furthermore, they also propose a centralized scheduler
that is able to extend to the edge if needed. This scheduler
could schedule function calls across many different edge node
clusters while taking hardware capabilities of different nodes
into consideration.

In [18], Shillaker lays out his plans to develop an edge
serverless framework for low-latency applications. He finds
that OpenWhisk is not sufficient in its performance, espe-
cially when scaled, and recommends improving the runtime,
scheduling, and state sharing. Instead of using Docker contain-
ers, Shillaker’s approach is to use language runtimes to provide
isolation while also introducing as little performance overhead
as possible. Building on top of that function runtime, he also
proposes improving on the relatively simple existing FaaS
platform schedulers with a custom one that considers resource
sharing within the runtime. And, finally, the author aims to
introduce state management into his serverless platform, which
he suggests can broaden its application areas as also hinted at
by Hellerstein et al. [19].

Similarly, Hall et al. [20] argue that containers are not fit for
serverless at the edge, as they introduce unnecessary delays
during container startup, and their nonmalleable resource
assignments hinder efficient resource usage. Their solution
is to use a WebAssembly runtime instead, which can also
provide both sandboxing, memory safety, and interoperability.
Currently the WebAssembly approach can remedy cold-start
overheads but performance is worse than in OpenWhisk.

Karhula et al. [21] describe an edge FaaS platform based
on Docker that allows for checkpointing of functions, paus-
ing the execution of a function, and taking a snapshot of
the container at a particular instance in time. This enables
pausing long-running or blocking functions when resources
are needed, backing up functions in case of failures, and even
for container state migration across different platform nodes.
While their experiments do show that checkpointing containers
introduces a latency overhead compared to paused containers,
their memory footprint is much smaller.

VI. CONCLUSION

Serverless is a very promising paradigm for the edge as
resources can be allocated in time slices (functions) instead of
long-running containers or virtual machines. As edge nodes,
however, are often resource constrained, a serverless edge
platform needs to be rather lightweight which is not the case
in current (cloud-focused) open-source FaaS systems.

To address this gap, we have presented tinyFaaS, a
lightweight, single-node FaaS platform for edge environments.
Using CoAP as application protocol and intelligent sharing of
function containers, tinyFaaS is able to achieve the desired
properties. For our evaluation, we implemented a proof-of-
concept prototype and ran a number of experiments in which
we compared the performance of our prototype to Lean
OpenWhisk (the only edge-focused open-source FaaS platform
that we are aware of) and Kubeless (the most resource efficient
open-source FaaS platform [10]). While our experiments show
that a native implementation can still be 40% faster than our
tinyFaaS prototype, we also show that tinyFaaS is 20 to 100
times faster than Lean OpenWhisk and 10 times faster than
Kubeless. Our experiments also show that tinyFaaS scales just
as well as a native deployment and significantly better than
both Lean OpenWhisk and Kubeless.

REFERENCES

[1] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
“Serverless Computing: Current Trends and Open Problems,” in Re-
search Advances in Cloud Computing. Springer Singapore, 2017, pp.
1–20.

[2] G. McGrath and P. R. Brenner, “Serverless Computing: Design, Imple-
mentation, and Performance,” in 2017 IEEE 37th International Con-
ference on Distributed Computing Systems Workshops (ICDCSW), Jun.
2017, pp. 405–410.

[3] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. A. Lee, and J. Kubiatowicz, “The Cloud Is Not
Enough: Saving IoT From the Cloud,” in 7th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud ’15), Jul. 2015.

[4] D. Bermbach, F. Pallas, D. G. Pérez, P. Plebani, M. Anderson, R. Kat,
and S. Tai, “A Research Perspective on Fog Computing,” in Service-
Oriented Computing – ICSOC 2017 Workshops, Nov. 2018, pp. 198–
210.

[5] D. Bermbach, S. Maghsudi, J. Hasenburg, and T. Pfandzelter, “Towards
Auction-Based Function Placement in Serverless Fog Platforms,” in Pro-
ceedings of the 2nd IEEE International Conference on Fog Computing
2020 (ICFC 2020), 2020.

[6] T. Pfandzelter and D. Bermbach, “IoT Data Processing in the Fog:
Functions, Streams, or Batch Processing?” in Proceedings of the 1st
Workshop on Efficient Data Movement in Fog Computing (DaMove
2019). IEEE, Jun. 2019, pp. 201–206.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
its Role in the Internet of Things,” in MCC Workshop on Mobile Cloud
Computing, MCC@SIGCOMM 2012, Aug. 2012, pp. 13–15.

[8] Z. Laaroussi, R. Morabito, and T. Taleb, “Service Provisioning in
Vehicular Networks Through Edge and Cloud: An Empirical Analysis,”
in IEEE Conference on Standards for Communications and Networking,
Oct. 2018, pp. 1–6.

[9] N. Naik, “Choice of Effective Messaging Protocols for IoT Systems:
MQTT, CoAP, AMQP and HTTP,” in 2017 IEEE International Systems
Engineering Symposium (ISSE), Oct. 2017, pp. 1–7.

[10] A. Palade, A. Kazmi, and S. Clarke, “An Evaluation of Open Source
Serverless Computing Frameworks Support at the Edge,” in The First
IEEE SERVICES Workshop on Serverless Computing (SWoSC), May
2019, pp. 206–211.



[11] F. R. S. Rev. Samuel Horsley, “The Sieve of Eratosthenes. Being an Ac-
count of His Method of Finding All the Prime Numbers,” Philosophical
Transactions, vol. 62, pp. 327–347, 1772.

[12] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open Versus
Closed: A Cautionary Tale,” in Proceedings of the 3rd Conference on
Networked Systems Design & Implementation, Apr. 2006, pp. 239–252.

[13] D. Bermbach, E. Wittern, and S. Tai, Cloud Service Benchmarking: Mea-
suring Quality of Cloud Services from a Client Perspective. Springer,
2017.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proceedings of
the 1st Symposium on Cloud Computing (SOCC), Jun. 2010, pp. 143–
154.

[15] D. Breitgand. (2018) Lean OpenWhisk: Open Source FaaS
for Edge Computing. Accessed: 2019-7-17. [Online]. Available:
https://medium.com/openwhisk/fb823c6bbb9b

[16] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: Towards High-Performance Serverless Computing,”
in 2018 USENIX Annual Technical Conference (USENIX ATC ’18), Jul.
2018, pp. 923–935.

[17] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar,
“Towards a Serverless Platform for Edge AI,” in 2nd USENIX Workshop
on Hot Topics in Edge Computing (HotEdge ’19), Jul. 2019.

[18] S. Shillaker, “A Provider-Friendly Serverless Framework for Latency-
Critical Applications,” in 12th Eurosys Doctoral Workshop, Apr. 2018,
p. 71.

[19] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless Computing: One
Step Forward, Two Steps Back,” in Proceedings of CIDR, Jan. 2019.

[20] A. Hall and U. Ramachandran, “An Execution Model for Serverless
Functions at the Edge,” in International Conference on Internet of Things
Design and Implementation, Apr. 2019, pp. 225–236.

[21] P. Karhula, J. Janak, and H. Schulzrinne, “Checkpointing and Migration
of IoT Edge Functions,” in 2nd International Workshop on Edge Systems,
Analytics and Networking, Mar. 2019, pp. 60–65.


