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ABSTRACT
In Function-as-a-Service platforms (FaaS), which have become very
popular lately, code is deployed in the unit of single functions and
the cloud provider handles resource management. There, a key
problem is the so-called cold start problem: when a request comes
in and no idle container can be found for the execution of the target
function, then a new container needs to provisioned. In that case,
the request incurs an extra latency – the cold start latency.

Recent work has largely focused on reducing the duration of cold
starts. In this paper, we present three approaches, complementary
to related work, that reduce the number of cold starts while treating
the FaaS service as a black box. In the approaches, implemented as
part of a lightweight choreography middleware, we use knowledge
on the composition of functions to trigger cold starts and, thus,
the provisioning of new containers before the application process
invokes the respective function. In experiments on AWS Lambda
and OpenWhisk, we could show that our approaches remove an
average of about 40% (in some cases up to 80%) of all cold starts
while causing only a small cost overhead.
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1 INTRODUCTION
The latest trend in cloud computing are so-called Function-as-a-
Service (FaaS) offerings often also referred to as “serverless”. In FaaS
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offerings such as AWS Lambda1, Google Cloud Functions2, or Open-
Whisk3, developers deploy code in the granularity of single func-
tions. The cloud platform then automatically handles resource allo-
cation depending on the number of concurrent requests. Based on
this, FaaS has received a lot of attention, e.g., [2, 3, 7, 10, 12, 14, 16],
as it can be seen as a major cloud evolution step – from a developer
perspective, the cloud is moving from pay-per-provisioned-resource
to a true pay-per-use model.

On a system level, FaaS platforms typically rely on container
technology4: When developers deploy their function, this function
code is bundled in a container and stored in a container repository.
When a request comes in, a gateway component checks whether
there is already an idle container instance that could serve the
request. When there is no idle container, the gateway allocates a
new one and directs the request to the respective machine. The time
between identifying that there is no idle container and the container
serving the request has been referred to as cold start latency or
cold start time [2, 12, 14]. In many cases, the additional cold start
latency effectively doubles the latency of function execution from a
client perspective. Cold starts can occur when an existing container
was unprovisioned due to a period of idleness or at the provider’s
discretion; usually, however, they happen (in significant numbers)
for growing workloads.

Researchers have tried to address this problem, which has also
been called the cold start problem, through a number of approaches,
e.g., [14, 15, 17]. Most of these approaches have in common that
they focus on single functions or try to increase the container ini-
tialization speed. In practice, however, functions are rarely deployed
in isolation but are rather part of some kind of “business process”.
This process may be implicit, e.g., when reacting to events from
other services, or explicit which can be seen in the availability of
orchestration services such as OpenWhisk’s Composer5 or AWS
Step Functions6.

In this paper, we demonstrate how to use process knowledge to
reduce the number of cold starts in a FaaS platform from a developer
perspective, i.e., treating the FaaS platform as a black box. For this
purpose, we make the following contributions:

(1) We propose a lightweight choreography middleware that
can be deployed along with the functions and which avoids
centralized orchestration components.

1aws.amazon.com/lambda
2cloud.google.com/functions
3openwhisk.apache.org
4Our approaches do not assume the use of containers; for ease of writing, however,
we will in the following pretend that FaaS platforms are container-based.
5github.com/ibm-functions/composer
6aws.amazon.com/step-functions
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(2) We develop and discuss three approaches for reducing the
number of cold starts based on hinting.

This paper is structured as follows: We start with an analysis of
the state of practice in current FaaS platforms that offer function
composition features (section 2) before describing our choreogra-
phy approach (section 3). Afterwards, we discuss the basic hinting
mechanism that we use to avoid cold starts during the execution of
processes and derive three approaches which determine when and
how to send hint messages (section 4). Next, we present the results
of a large number of experiments which demonstrate that our ap-
proaches can avoid up to 80% of all cold starts at low monetary cost
(section 5). Finally, we discuss the limitations of our approaches
(section 6) and related work (section 7) before concluding this paper
(section 8).

2 STATE OF PRACTICE IN USING PROCESS
KNOWLEDGE TO AVOID COLD STARTS

The basic idea of our approach is to use the knowledge on process
composition to reduce the number of cold starts that are encoun-
tered during the execution of our functions: When the developer
deploys a composition of functions [A,B,C,D] rather than individ-
ual functions A, B, C, and D, then FaaS platform providers could
theoretically know that functions B, C, and D will be invoked once
a request arrives for function A. They could even provide estimates
for the point in time when this will happen.

Our intended approach goes beyond this in two regards: First,
we aim to enable the application developer to control the number
of cold starts since a FaaS platform provider might decide not to
treat all applications in the same way. Second, per definition a
solution offered by the platform provider will be single platform.
There are, however, scenarios where processes will span multiple
platforms, e.g., when trying to avoid the “data-shipping architecture”
criticized by Hellerstein et al. [8] or for deployments across cloud
and edge [3, 16].

Regarding the state of practice in existing platforms, we analyzed
two major platforms: IBM Cloud Functions, which runs OpenWhisk
(in the following, we will refer to this exclusively as OpenWhisk),
and AWS Lambda. For OpenWhisk, we learned in personal conver-
sation with one of the lead developers that they had had a similar
idea almost two years ago but that it had not been added to Open-
Whisk Composer yet. For AWS Step Functions, the orchestration
service for Lambda, we ran a simple experiment in which we de-
ployed two different Step Functions descriptions. One contained
a sequence of four code-wise identical functions, the other con-
tained only one of these. We then ran Apache JMeter7 to create
load on these functions. For both deployments, we sent droves of
ten concurrent requests every five seconds for five times.

The intuition behind this was that the first drove will always
cause ten cold starts (so that we could measure cold start latency)
while the following four should all meet warm and idle instances
(so that we had a base value for comparison). If Amazon were using
the process knowledge, then the first drove of the four-function
deployment should only have a single cold start; if not, it should
accrue four cold starts. The experiment consistently showed that
Step Functions does not use the process knowledge.
7jmeter.apache.org

To conclude, implementing an application-side solution that
treats the FaaS platform as a black box is the only option that (i)
will work with multi-platform deployments, (ii) avoids discrimina-
tory treatment by providers, and (iii) allows to retrofit cold start
management to widely used FaaS services where the provider is
not using the process knowledge.

3 FUNCTION COMPOSITION
While there are existing function composition offerings by indi-
vidual providers, there are to our knowledge no cross-platform
composition solutions yet. Developing one is, obviously, not a ma-
jor contribution but is necessary for our main contributions in
section 4.

As known from the service composition world, there are two
fundamental approaches to composition: orchestration (a dedicated
orchestrator component sequentially invokes all steps of the pro-
cess) and choreography (each step invokes the next step upon com-
pletion). Since we wanted to avoid the problem of double billing as
described by Baldini et al. [2], orchestration could only be achieved
through “client-side scheduling”. This strategy, however, comes
with a number of disadvantages. Besides the extra machine neces-
sary to invoke the functions, it is unclear where this machine should
be deployed in a multi-cloud or even fog deployment which would
either mean increased latency or running multiple client machines
that need to coordinate the hand-over of process instances. Hence,
we already tended towards choreography which is also more in line
with the microservice paradigm which in turn corresponds nicely
to FaaS. Finally, we decided that the substitution principle of the
serverless trilemma [2] is the least important for our purposes as
our focus is not on being able to build compositions of composi-
tions but rather to have a simple composition middleware that is
co-deployed with the functions of the process.

To get the desired multi-platform capabilities, we restricted our
choreographymiddleware to node.js and built it on top of the server-
less framework8 which among others supports AWS Lambda and
OpenWhisk out of the box and is often used for FaaS deployments
in practice. To use our choreography middleware, developers have
to add a workflow description (containing concise information on
the process steps and their sequential or parallel ordering) and a
small JavaScript library to their deployment. Beyond this, they need
to make a small change to their function code in that they paste
some JavaScript glue code into the file and modify the header of the
original function so that it becomes a step handler instead. This as-
serts that the FaaS platform, instead of calling the original function
directly, invokes the “glue code” which then delegates execution to
the step handler. In the glue code, our middleware checks whether
a workflow state has been passed (otherwise it simply invokes the
step handler and returns its result), triggers our cold start avoidance
mechanisms (we will describe those in section 4), and invokes the
next function of the process.

4 MANAGING COLD STARTS IN FAAS
In this section, we will present our three approaches for reducing
the number of cold starts from a client perspective. We refer to these
approaches as the naive, the extended, and the global approach.
8serverless.com
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Figure 1: Naive Approach: Control Flow in the Middleware

The naive and the extended approach can be implemented as part
of the FaaS-deployed middleware presented in section 3, the global
approach uses additional components9.

4.1 The Naive Approach
The intuition behind the naive approach is that a process which
encounters a cold start in its first step is (under some assumptions)
very likely to encounter cold starts for the other steps as well. This
is particularly true for processes that are only triggered from time
to time so that all containers have been unprovisioned but will also
happen during phases of increasing request rates. The idea now
is to notify all other steps whenever the first step encounters a
cold start so that an additional container can be provisioned for
these steps. Since FaaS platforms currently provide no interfaces
for applications to do this directly, this can only be achieved by
invoking all other steps (asynchronously), i.e., sending them a hint;
each step in turn just terminates right away whenever it receives a
hint message. This approach can easily be implemented as part of
the choreography middleware from section 3. See figure 1 for an
overview of the approach.

Issues:While the naive approach is indeed very simple to imple-
ment, it suffers from a number of issues that make its use limited
beyond some special cases. The main problems are hint misses and
process overtaking. Hint misses mainly come from the fact that the
approach has the implicit assumption that all steps will have the
same utilization. Hence, a high percentage of hint messages will
actually be processed by idle, warm instances instead of provoking
the desired out-of-process cold start. Process overtaking, on the
other hand, happens whenever the cold start time of step 2 exceeds
the processing time of step 1. In that case, the hint message might
trigger a cold start for step 2 which will still be ongoing when step
1 terminates, invokes step 2, and is then likely to cause another
cold start. In rare cases, hint misses and workflow overtaking to-
gether might even lead to additional cold starts: whenever a hint
message blocks an otherwise idle instance which is at that precise
moment invoked by the regular process execution. Of course, the
naive approach can also not avoid cold starts in the first process
step. It should, however, be noted that neither of our approaches

9Our source code is available at https://github.com/CloudFunctionChoreography
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will ever trigger an unnecessary instance start as hints are only
sent when there is an observed lack of instances.

4.2 The extended Approach
With the extended approach, we specifically aim to address hint
misses and process overtaking; it is more or less an improved ver-
sion of the naive approach. Process overtaking is most likely to
happen in step 2 of a process: in later steps, it can only happenwhen-
ever all previous steps aside from the first one did not encounter
a cold start. Therefore, the simplest approach to address process
overtaking is to use the naive approach but to send the hint to step
2 “synchronously”, or more precisely: to send it asynchronously
but to wait for the result before terminating the function. This way,
process execution will wait until the (potential) cold start in step 2
has been completed.

Furthermore, to address the issue of hint misses, we propose a
mechanism which we refer to as recursive hinting: upon receipt
of a hint message, the function checks whether it had a cold start
or not. In case of a hint miss, the function sends a hint message to
itself to “enforce” a cold start at some point.

In recursive hinting, we have identified two tuning mechanisms
(for readability reasons not shown in figure 2). The first is the
maximum recursive depth which puts an upper limit on the num-
ber of recursive hints which can easily be implemented through a
counter. This aspect is crucial as a safety mechanism, especially in
combination with the second tuning mechanism.

The second mechanism describes how to send the self-hints.
There are basically three different ways: asynchronous, synchro-
nous, or synchronous with time-out. Asynchronous will make the

https://github.com/CloudFunctionChoreography
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Figure 4: Global Approach: Control Flow in the Middleware

original function instance available to real requests as fast as possi-
ble. This, however, means that it needs to be combined with a short
“sleep” period to avoid situations in which a self-hint not only in-
vokes the same function but also the same function instance. Here,
the maximum recursive depth limit is crucial to avoid infinite recur-
sion. Synchronous, in contrast, means that the function instance
will block until a cold start has been reached. It will, however, also
block during the cold start which essentially means to block (almost)
all warm instances when provisioning a new instance until that in-
stance is available. We propose to use synchronous with time-outs
as a middleground solution. Here, the self-hint should only block
for the duration necessary to actually make one or two self-hint
calls10. This asserts that the function instances become available
again before the cold start of the new function instance completes
but provides poorer guarantees regarding the actual enforcement
of a cold start. We believe that this is the best configuration for this
approach. Figure 2 shows an overview of the approach, especially
in comparison to figure 1.

Issues: While the extended approach addresses the two core
issues of the naive approach, there are still a number of problems.
Arguably, the main problem remainining is that both approaches
need to encounter a cold start first to avoid other cold starts, i.e.,
their main use is to avoid situations where the cold start durations
add up over the course of a longer process execution. Furthermore,
both approaches assume that the execution duration of different
steps in a process is comparable which also means that each step
needs approximately the same number of instances to process a
constant workload. In an extreme example, where one step takes
1ms to complete and the next one takes 1s to complete, this is simply
not true: the slower function needs approximately 1000 times more
function instances for the same process workload. If the first step
is the slowest, this “only” causes overprovisioning (i.e., cost) in the
later steps. If the first step is the fastest, neither approach will have
much effect on the number of cold starts.
10In our prototype, we configured this blocked time as the one way latency for invoking
a function (determined through experiments) times the number of remaining recursive
hints as defined by the self-hint counter.

4.3 The Global Approach
While at least part of the issues above could be addressed through
incremental changes to the extended approach, we decided to de-
velop the global approach which tries to tackle all of them through
a fundamentally different mechanism. Both other approaches suffer
from a lack of knowledge on the global system state but in exchange
are very lightweight and are simply co-deployed with the individual
functions (we will later discuss advantages and disadvantages of
all three approaches in detail). For the global approach, we decided
to introduce the hint manager as a central component that collects
monitoring data from the process executions and runs simulations
based on queuing theory to determine the best point in time when
to send hints. See figure 3 for a high-level overview of components,
their interaction, and their deployment.

Following Kendall’s notation, a process of FaaS functions can
be described as a sequence of A/S/c systems where especially c –
the number of containers executing a specific function – is highly
variable. For our approach, we made the assumption that both the
arrival rate of new workflows as well as the execution duration
of all functions follow an exponential distribution which means
that each process step can be modeled as an M/M/c system. We
also assume that the system is in a steady state as this significantly
simplifies our simulation.

Please, note: We are aware that an exponential distribution is not
necessarily correct for the execution duration. We are also aware
that the steady state assumption is definitely incorrect as it would
imply that the ideal number of containers were already provisioned.
Finally, we are also aware that the exponential arrival rate will
in most scenarios, e.g., in case of increasing load, be incorrect as
well. We nevertheless decided to use these assumptions as they
significantly simplify our approach and leave the fine-tuning to
future work. However, we carefully asserted that the experiments in
section 5 use realistic use cases and indeed explicitly violate all but
the assumption of having an exponentially distributed execution
duration. This was done to demonstrate how well the approach
works under adverse conditions.

The Middleware: As already indicated above, the global ap-
proach shifts the complexity of deciding when to send which hint
to an external hint manager component running on a VM. As such,
this significantly reduces the complexity of the functionality part
that is co-deployed with the function as part of our choreography
middleware. As shown in figure 4, the hinting part is completely
removed from the FaaS-deployed middleware. Instead, the middle-
ware collects a number of monitoring metrics (e.g., start and end
timestamp of the function execution or whether it was cold start)
and sends it to the external hint manager, asynchronously. Upon
receipt of a hint message in a warm instance, the function blocks
for a short period of time to assert that several hints sent in parallel
cannot be served by the same container. We will later see that this
is problematic for OpenWhisk’s queuing model but works well for
AWS Lamda. The middleware is still responsible for choreography,
i.e., the hint manager is not involved in the data flow.

The Hint Manager: As already indicated, the hint manager
has two core responsibilities. First, it acts as a sink for monitoring
data; second, it tries to send hint messages at the optimal point in
time. As part of the monitoring task, the hint manager assembles
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Figure 5: Global Approach: System Snapshots are Simulated
for Timestamps every offsetms

received data for two sets of core metrics. The first group describes
the current infrastructure state, namely the number of idle and busy
instances as well as the average processing time for each step (both
cold and warm durations). The second group describes the process
state, namely the average arrival rate of new process instances and
for each process instance the step which is currently being executed.
These together provide a comprehensive overview of the system
state (the “system snapshot”) and allow us to make predictions
about future snapshots.

The simulation itself continuously runs in sequential rounds. For
a given simulation round, the hint manager determines a forecast-
ing end, the untilTime. For this parameter, it selects the point in
time when a process starting now would (on average) terminate
if it were to encounter a cold start for every single step. While
this is configurable it allows us to assume that all currently active
processes will have a simulated end as part of one simulation round.
Beyond the untilTime, we also have an offset parameter (de-
fault: 20ms) which describes the interval between simulated system
snapshots.

Step 1: During a simulation round, the hint manager calculates
a system snapshot for every timestamp marked with a line in fig-
ure 5. This works by iterating over each process instance (including
predicted ones as defined by the observed average process arrival
rate) and calculating the respective progress by adding respective
(average) durations for (i) invocation, (ii) optional cold start delay,
and (iii) either cold or warm execution. This is done based on the
steady-state queueing model described above.

Step 2: Considering the already known (and during an iteration
updated) number of idle and busy instances per step, this allows us
to easily forecast the timestamps of future cold starts. From each of
these timestamps, we subtract the average invocation and cold start
latency which gives us the latest point in time when a hint message
could still successfully trigger a cold start before the respective
function instance is actually needed.

Step 3: Next, we exclude all events from this set for which that
latest time is more than one second in the future11 as well as all
events for which we already scheduled a hint message in a previous
simulation round.

Step 4: Finally, we group all events by function and identify
for each group the timestamp between now and the first event
where the respective function will have the highest utilization (see
example below). For those timestamps, the hint manager schedules
the respective hint messages – they are sent asynchronously – and
then starts all over with the next simulation round.

In the example shown in figure 6, the first three simulation steps
identified that a hint message each needs to be sent at the latest at
11The further we go into the future, the less accurate are our predictions; we can,
however. easily run several simulation rounds per second and, thus, simply address
the event in a later simulation round.
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Figure 6: Global Approach: Example for Hint Scheduling

t5 and t7. If we were not grouping hint messages, this would mean
to send four parallel hint messages at t5 (three to temporarily block
the idle instances, one to trigger the desired cold start) and three at
t7 (two to block the idle instances, one to trigger the desired cold
start). While sending the hints for both of them together improves
efficiency, we cannot send the hint messages later than t5. Out of
the timestamps t1 to t5, sending hint messages at t2 or t3 involves
the least number of hint messages as no additional hints are needed
to block idle instances. In this case, we would send the two hint
messages at t2 as sending them a bit early gives us an additional
buffer in case the cold start delay is longer than anticipated.

Issues: Besides the added complexity of having to run the hint
manager, the main limitation of the global approach is that the
process types are limited (see section 6). Otherwise, the approach
suffers from the assumptions discussed above and a few minor
twitches. For instance, the approach does not account for hint
misses or periodic instance unprovisioning. Both mean that the
next few simulation rounds will work with slightly incorrect data
before the deviation is detected through monitoring. The simu-
lation itself is not very computationally intensive: for n parallel
process instances withm function steps each, a simulation round
roughly corresponds to adding n ∗m integers with small values for
m. Hence, scaling the hint manager up should be able to manage
quite high numbers for n. Since the hint manager can also easily be
sharded by process type, we believe that the hint manager is not a
scalability problem. In cases where scale-up is no longer possible
due to extremely high load, running a self-hosted OpenWhisk –
adapted to consider process information for cold starts – will by
far be the more efficient option.

5 EVALUATION
The evaluation of our three approaches is twofold. First, our proof-
of-concept prototype already described in earlier sections shows
that the approaches can indeed be implemented and deployed. Sec-
ond, we ran a large number of experiments to assess the effective-
ness, i.e., impact on the number of cold starts, and the efficiency, i.e.,
cost overheads, of all three approaches. In this section, we describe
these experiments in detail.
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5.1 Experiment Design and Setup
Our experiment parameters comprised three deployment options,
two different process types, and two different workloads. Beyond
experiments with our three approaches, we also needed to com-
pare the results to a baseline value that used our choreography
middleware but did not leverage any of our three approaches12. In
total, this means 48 different setups which we each repeated four
times. Furthermore, we randomly selected one setup combination
and repeated it twenty times for each of the three approaches as
well as the baseline configuration to assert stability of results.

Process Types:We used two different process types, the homo-
geneous and the heterogeneous, with 16 steps per process. Both
used an exponential distribution of processing durations but had
different mean values respectively. Since we had noticed in earlier
experiments that the processing duration on OpenWhisk and AWS
Lambdawas highly variable and even showed temporal patterns, we
implemented the code of each function as a simple sleep command
to assert reproducibility of results. Please, note that the functions
did not all sleep for the same duration but instead used a random
value with preconfigured mean and variance. The homogeneous
process had a mean value of 500ms for all process steps. The hetero-
geneous process started with a mean of 500ms for the first step but
then increased by 50ms for every even step and decreased by 50ms
for every odd step. This means that the sequence of mean values
was 500, 550, 450, 600, 400, ..., 150, 900. Following this pattern, we
could assert that our experiments included both situations where
the first step is the longest and the shortest step. Please, note, that
neither of our approaches is affected by the execution duration of
functions aside from being able to monitor it (global approach).

Deployment Options: We deployed our example processes in
three different setups. First, on AWS Lambda only. Second, on Open-
Whisk only (we used IBM Cloud Functions). Third, in a federated
setup where the first four steps run on OpenWhisk, the second on
Lambda, the third again on OpenWhisk, and the final four again
on Lambda.

Workloads: We ran two different workloads, the growth and
the burst workload. Both workloads were implemented using JMe-
ter and had a warm-up, a measurement, and a cool-down phase.
For our experiments, we only considered the results of processes
started during the measurement phase. We also ran an initial set
of experiments where single requests were sent to a cold infras-
tructure. Since these results were as expected we did not do further
experiments with that workload.

In the growth workload, the warm-up phase only deployed the
example process and did not issue any requests. After 150s, the
first process request was sent, after 650s the last. In between, the
process arrival rate linearly increased from 0 to 5 req/s. The cool-
down phase ran for another two minutes with a stable process
arrival rate of 5 req/s. In each growth experiment, 1300 process
instances were executed as part of the measurement phase (1815 in
total).

In the burst workload, the warm-up phase had a gradual in-
crease of arriving process requests from 0 to 3 req/s over about

12We decided not to use a mechanism from related work as baseline since these
mechanisms are either orthogonal to our approach or are provider-side mechanisms
which we could not use.

Table 1: Baseline: Number and Percentage of Cold Step Exe-
cutions for the Heterogeneous Workload

API Deployment Burst Growth

AWS Lambda 306 (5.3%) 93 (0.44%)
OpenWhisk 92 (1.6%) 85 (0.40%)
Federated 127 (2.2%) 70 (0.30%)

four minutes. Next in the measurement phase, the arrival rate sud-
denly jumped to 8 req/s stayed at that level for about 30s before
dropping back down to 3 req/s and proceeding into the cool-down
phase. Again, we only considered the 356 process instances that
each experiment started as part of the measurement phase (1001 in
total).

5.2 Results: Baseline
In our baseline experiments, we quantified the number and dura-
tion of cold step executions. Table 1 shows the absolute numbers
and the relative share of cold step executions in case of the hetero-
geneous workload (as expected homogeneous vs. heterogeneous
had little effect on the baseline results). Indeed, the numbers show
very different scaling strategies in Lambda and OpenWhisk: While
Lambda aggressively provisions new container instances, Open-
Whisk queues requests first under the assumption that waiting for
an existing instance will often be faster than incurring a cold start.
This, however, can also be seen in the cold start latency: OpenWhisk
consistently shows higher cold start latency values (ca. 6% in the
best case, ca. 30% in the average case, ca. 60% in the worst case) than
Lambda as the cold start latency on OpenWhisk typically includes
significant amounts of queueing time.

We also found that the cold start latency and the execution
duration varied a lot (partly with temporal patterns) whereas the
number of cold starts was relatively stable. To assert comparability,
we will hence focus on the number of cold starts in the following.

5.3 Results: Effectiveness
To evaluate the effectiveness of our approaches, we compared the
number of cold starts in the baseline experiment to the results for
our three approaches. As can be seen in figure 7, all approaches
have an effect on the number of cold starts. As expected, the naive
approach is too simplistic to deal with all scenarios but aside from
the burst/heterogeneous/OpenWhisk experiment it nevertheless
leads to a reduction of up to 30% of all cold starts.

As also expected, the extended approach works significantly
better; across all experiments, it resulted in a reduction of about
40% of all cold starts. Considering the still very simple design, we
deem this a very good result. Indeed, the extended approach also
performs rather consistently across all configurations.

Finally, the global approach tends to outperform the extended
approach in almost all configurations. In the Lambda-only deploy-
ments, it achieves reductions around 70-80%. As already hinted at
before, though, it currently does not work very well with Open-
Whisk (and consequently in the federated deployment). We believe
that this is due to OpenWhisk’s internal queuing model which
simply queues our hints – which after all have been designed to
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Figure 7: Relative Cold Start Reduction per Function

complete fast – instead of provisioning new instances. As such, our
hint messages actually lead to additional load on the system where
the already full queues then result in cold starts once the actual
requests arrive. While the global approach still manages to achieve
a reduction of about 30-40% on OpenWhisk, the extended approach
is the more efficient solution in that scenario.

So far, we have analyzed the number of cold starts on the level of
individual steps. As an alternative analysis, figure 8 shows how the
distribution of cold starts changes for the federated/heterogeneous
setting (which is a bit of an average case): As already shown in
our baseline experiments (table 1), there is a much higher rate
of cold starts for the burst workload. This is also reflected in the
per-process distribution of cold starts. Under the growth workload,
the vast majority of cold starts is a single cold start per process
whereas processes under the burst workload are much more likely
to experience several cold starts.

As already expected based on figure 7, the naive approach has
very little effect on the number of cold starts. Both the extended
and the global approach, however, have a significant impact on cold
starts and effectively shift the baseline curve from figure 8 to the
left. This shows that our approaches are particularly effective in re-
moving the long tail of processes incurring multiple cold starts. For
the growth scenario, the lower number of single cold starts when
using the global approach indicate that proactively sending hint
messages under the assumption of a constant arrival rate is already
quite effective. Therefore, we expect that an extension actually
forecasting arrival rates, e.g., based on [4], might actually be able
to remove a much larger share of cold starts. Regarding the lower
percentage of single cold start processes in the growth/extended
experiments, it appears that when two processes start in parallel
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Figure 8: Percentage of Process Instances with n or more
Cold Starts

where one encounters a cold start directly, its hint messages may ac-
tually avoid the cold starts in the following steps for the respective
other process instance.

A good explanation for the effectiveness of our approaches can
also be seen in the hint hit ratio, i.e., the number of hints that actu-
ally led to a cold start divided by the total number of hint messages
sent. Table 2 shows which percentage of the hint messages led to
cold starts. For the naive approach, only about 5-10% of all hint
messages have the desired effect which explains the poor perfor-
mance of that approach. The global approach in contrast achieves
hit ratios of 40-60% which shows how much can be gained through
careful timing of messages. In fact, this number underestimates
the effectiveness of the approach as the total number of hint mes-
sages also includes hints which have been sent to block idle and
warm instances, i.e., which were hint misses on purpose. For the
extended approach, we report two numbers: the first number shows
the overall hint hit ratio which is not much better than in the naive
approach due to the high number of hint messages sent through
our recursive hinting. The numbers in brackets show the hit ratio
when considering a sequence of recursive hints as “one hint” which
imply that recursive hinting leads to the desired cold start in 35-65%
of all cases. This shows that recursive hinting – while subject to a
number of cost/effect tradeoffs – is a fairly effective mechanism to
provoke a cold start. We believe that this is the main cause behind
the extended outperforming the naive approach.

5.4 Results: Efficiency
While our approaches help to reduce the number of cold starts,
they also increase monetary cost. In this section, we want to give
an overview of the costs incurred by using one of our approaches.
For this purpose, we use the results from the same experiments as
in the last section. Ideally, we would be able to directly quantify
the costs of each approach and then compare them. This, however,
would not be a fair comparison as we have seen a lot of variance
(even including temporal patterns – 2-3x performance variation
on OpenWhisk and up to 1.8x on Lambda) in our performance
measurements. Furthermore, the vast majority of resource usage is
caused by the monitoring instrumentation necessary not for our
approach but rather to obtain measurement results. Without these,
we would not be able to get any measurement insights. Hence,
we use the time measurements from the baseline experiment and
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Table 2: Average Hint Hit Ratio

Burst Growth
Naive Extended Global Naive Extended Global

Lambda 10.47% 10.85% (35.64%) 38.21% 9.82% 10.15% (34.41%) 61.08%
Homogeneous OpenWhisk 9.32% 16.2% (51.77%) 39.29% 5.90% 23.41% (67.78%) 48.75%

Federated 10.59% 12.82% (41.67%) 58.05% 4.76% 14.08% (46.92%) 58.26%
Lambda 11.63% 11.17% (35.94%) 37.71% 6.22% 9.23% (31.52%) 41.56%

Heterogeneous OpenWhisk 11.61% 13.16% (44.00%) 50.75% 10.46% 21.54% (65.63%) 55.35%
Federated 7.92% 9.98% (35.00%) 42.12% 6.67% 14.74% (48.44%) 63.09%
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Figure 9: Hinting Costs and Optimization Benefits in ms Ex-
ecution Duration Compared to the Baseline (Heterogeneous
Process)

use the information on the number of cold starts from the other
experiments to calculate cost effects based on a cost model.

The main cost driver is the billed duration which approximately
corresponds to the execution time of a function. We will use this
duration as our cost metric as the monetary cost depends on the
respective provider. To quantify the duration, we need to compare
hinting costs and the optimization benefits. The hinting costs can
be calculated as the average cold execution duration of hints times
the number of such executions plus the corresponding number for
warm executions (thw ∗ nhw + t

h
c ∗ nhc ). Likewise, the optimization

benefits can be calculated as the number of avoided cold starts times
the average warm execution duration plus the remaining number
of cold starts times the average cold execution duration minus the
baseline value (nfa ∗ t

f
w + n

f
r ∗ t

f
c − baseline)13.

As can be seen in figure 9, which shows the hinting costs and
optimization benefits for the heterogeneous process as an example,
there is not necessarily a significant cost overhead when using
one of our approaches. When considering the execution time as
the only cost metric, using the global approach for the Lambda-
only setup will actually lead to cost savings. This is due to the fact
that the optimization benefits outweigh the hinting costs – as seen
in other experiments, it also improves the platform utilization by
creating less function instances in total. For all other setups, the
cost increase is low – the maximum increase of billed duration
across all experiments was 1.3%.

13This is a slightly simplified model that does not account for the additional execution
duration due to the extended’s process overtaking avoidance scheme. This value can
be expected to be rather small in comparison to other cost factors.

The billed duration as determined above does not cover all costs
associated with our approaches. The remaining aspects, however,
are hard to quantify without a concrete application. To give two
examples:

First, on AWS there are additional invocation costs (which affect
hint-heavy approaches) and costs for the API Gateway14 which
routes the calls to Lambda. API Gateway, however, comes with a
one million request free tier, then charges for batches of millions
or billions of requests. Depending on the number of requests in the
application itself, adding one of our approaches can either put the
monthly bill into the next higher category or may not have any
effect at all. Quantifying these costs is therefore impossible, but the
overall price is also very low (2-3 USD/month).

Second, there are additional costs for the VM running the hint
manager. This is again almost fixed cost as the smallest instance
type will suffice for rather complex deployments with a lot of load
as the simulation is not very computationally intensive. Such an
instance is again often part of a free tier and the per-month cost
of a scaled hint manager cannot be translated into variable cost
without a concrete application.

All in all, we would expect the monetary overhead to be much
less than 5% for typical deployments.

In terms of effects on other tenants, hints are only sent when
needed and not as keep-alive hints so that there should not be a
negative on other tenants. In our experiments, we could see that
the overall utilization of function instances remained constant for
all setups aside from Lamda-only where the instance utilization
increased.

6 DISCUSSION
While we have shown in our evaluation that our three approaches
indeed reduce the number of cold starts by up to 80% – and that
at a very low overhead, our approach violates all design goals of
FaaS platforms: In contrast to other execution platforms, FaaS in-
tends to isolate the application provider from all aspects of resource
management. With our approaches, we however have again added
an application-side infrastructure management component. In this
regard, we believe that the most desirable situation would be when
cloud providers would actually use the process knowledge that
already exists, e.g., as done in SAND [1]. Aside from the manage-
ment perspective, this would also be much more efficient as a FaaS
provider can simply trigger the initialization of a new container and
does not need to rely on the fairly inefficient hinting mechanism.

14aws.amazon.com/api-gateway
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Even then, however, the knowledge from multi-platform processes
could not be used unless FaaS providers start to cooperate (which
we deem highly unlikely). All in all, we do not see much of an
alternative to an application-side solution at the moment.

In terms of efforts, we would recommend the extended approach
which, as a middleware component, can simply be co-deployed
with the functions and still removes about 40% of all cold starts. For
a Lambda-only deployment, the global approach is also an option if
the effort for running the additional hint manager in a fault-tolerant
and scalable way is worth it, e.g., for latency-critical workloads with
a lot of volatility. In that case, we would recommend to augment the
hint manager with workload prediction functionality, e.g., based
on [4], instead of assuming a constant process arrival rate. We
cannot recommend the naive approach and will ignore it in the
following.

Regarding availability and scalability of our approaches, the
extended is as available as the FaaS platform and scales along with
the function instance. As such, we do not see a problem there.
The global approach, however, runs the hint manager which is
at the moment a single point of failure. In terms of availability,
the state in the hint manager is not important: should the hint
manager instance fail, the application will see some more cold
starts for a short while but an instance started from scratch should
be able to catch-up in less than a minute. Regarding scalability,
the hint manager can be scaled up quite far. In fact, we believe
that the resource bottleneck will not be the simulation process but
rather the VM’s bandwidth from receiving monitoring data and
sending hints. Here, the hint manager could easily be sharded per
process type. If an application achieves such a high process load
that the biggest VM type is overloaded when handling a single
process type, then the overall costs to operate that application will
in all likelihood be so high that operating an open source FaaS
system such as OpenWhisk, where one could then implement a
more efficient cold start manager, would be the more economic
alternative anyhow.

Arguably, an alternative to our approaches would be to fuse all
functions into a single function. This, however, is only possible for
single-platform processes and when the resulting artifact does not
violate platform limits in terms of execution duration and executable
size. Preferably, this fusion would also be done automatically to
maintain code clarity for developers – we are not aware of any
approach in this regard.

The process types supported by our approach are limited to
linear workflows and parallel branches (where all branches are
executed). Conditional branching can only be supported by sending
hints to all branches independent of the actual process execution
which may create unnecessary function instances. Our approaches
cannot deal with cyclic processes unless the number of repetitions
is known when process execution starts.

Finally, onemight argue that the process knowledge is not always
known. This is correct. Nevertheless, the process information exists
implicitly and could be mined from logs, e.g., [20], or collected via
state-of-the-art tracing approaches, e.g., [19]. Such an approach
would also offer much more flexibility in considering situations
where, e.g., process P1 stores a file which then triggers a pub/sub
message which then triggers another process P2. Effectively P1 and

P2 are the same process which, however, is hard to detect without
advanced process mining and tracing.

In future work, we plan to work on a provider-side alternative
to our approaches, e.g., as part of the open source OpenWhisk, but
also to explore how a “learned” process could be used as part of our
existing approaches.

7 RELATEDWORK
In this section, we discuss related work, starting with function
composition before focusing on provider-side and client-side ap-
proaches for cold start optimization.

7.1 Composition of Serverless Functions
Lopez et al. [6] evaluated IBM Composer, Amazon Step Functions,
and Azure Durable.All three are platform-specific and use an exter-
nal orchestrator which coordinates the function invocations in a
centralized way. Our approach, in contrast, uses a choreography-
based process model which inherits several advantages, such as
the independence from cloud providers and therefore the ability to
easily integrate into federated FaaS systems.

Another solution to function composition is to implement the
orchestrator as an additional function which, according to Baldini et
al. [2], leads to “double-billing”. Therefore, OpenWhisk provides the
ability for sequential function compositions without double-billing,
so-called function sequences [2, 6].

Beyond these, Fouladi et al. [5] presented an approach that dis-
tributes large compilation tasks across serverless functions. Their
purpose, however, is not function composition but rather to split
the processing of a large DAG into individual tasks, distribute those
across functions, and collect the results. Also, Malawski et al. [13]
have extended the HyperFlow system to distribute subtasks from
scientific workflows to AWS Lambda and Google Cloud Functions.
Comparable to Fouladi et al. [5], their focus is not on function
composition but rather on distribution of processing tasks.

7.2 Optimizing Cold Starts within the FaaS
Platform

The cold start problem has been identified as a challenge for server-
less computing [2, 21]. Also, multiple studies have discussed cold
start latency and its influence factors, e.g., [11, 14, 17].

Based on these, a number of approaches have been developed
which aim to reduce the cold start latency directly:

OpenFaaS15 is a simple example for provider-side cold start
optimization. It always keeps a single warm container for every
deployed function [18]. This, however, only addresses scenarios
in which the arrival rate increase is less than one divided by the
average cold start latency. For every additional concurrent request,
there are still cold starts. Likewise, OpenWhisk [2] uses so-called
“stem cells” which are running containers that use a base image
without the function code and its libraries. This reduces the cold
start time as containers are already “semi-ready”.

Oakes et al. [15] proposed an approach called Pipsqueak which
aims at reducing the size of deployment packages. For this goal, they
extend the OpenLambda platform [9] to give single functions access

15https://www.openfaas.com/
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to pre-deployed, shared python libraries. A similar approach [22]
involves the use of unikernels instead of containers. As these are
more light-weight they tend to have a shorter initialization duration
for function instances.

SAND [1] is an alternative FaaS platform that collocates func-
tions of the same application within one container and can, thus,
avoid cold start accumulation. SAND does not need our approach;
however, as a research prototype, it is far from being production-
ready so that we still have to deal with today’s FaaS services.

Overall, the key difference is that our approaches can be used
with multi-platform deployments and do not require cooperation
or action of the platform provider.

7.3 Optimizing Cold Starts in the Application
There are a number of approaches that can be used to optimize cold
starts within the application:

Manner et al. [14] identified factors that affect cold start latency.
Among others, they showed that there is a correlation between the
cold start latency and the specified memory size. While users with
little cost constraints can simply specify the maximummemory size,
choosing the optimal size requires to consider a cost/performance
tradeoff [12] and is, thus, often not realistic.

Puripunpinyo et al. [17] evaluated how to reduce the deployment
package size of Java-based serverless functions which, as described
above, reduces cold start latency. All these approaches focus on
cold start latency and, thus, complement our approach.

Lloyd et al. [12] proposed a simple mechanism to reduce the
number of cold starts: clients periodically invoke all functions to
avoid unprovisioning of unused instances. Overall, this corresponds
to our hinting mechanism but can only assert availability of a single
function container, i.e., it helps for workloads with single periodic
requests but not for a growing load.

An alternative to our approach would be composition by fu-
sion [2]. This, however, is only possible for single-platform pro-
cesses and when the resulting artifact does not violate platform
limits (execution duration and executable size). Preferably, this fu-
sion would also be done automatically to maintain code clarity for
developers – we are not aware of any approach in this regard.

Overall, there are only a few approaches that actually aim to
reduce the number of cold starts instead of reducing the cold start
duration. Of these, our approach is, to our knowledge, the first
one to leverage insights on application processes and function
composition to reduce the number of cold starts.

8 CONCLUSION
In the last few years, “serverless” FaaS has become very popular.
In FaaS, developers deploy individual functions while the platform
provider manages the infrastructure, e.g., scaling in or out as needed.
FaaS-based applications often incur so-called cold start latency
which is the extra delay caused by provisioning a new function
instance (typically a container). Recent work has mostly focused on
the reduction of cold start latency, e.g., through smaller container
sizes [15] or the use of unikernels instead of containers [22].

In this paper, we proposed a complementary client-side approach
which reduces the number of cold starts using application knowl-
edge on function compositions. Intuitively, once such a “process”

is started, we know the approximate number and time of requests
to later functions in that process. For this purpose, we presented
a lightweight multi-platform choreography middleware that can
be co-deployed with serverless functions. We then proposed three
approaches, implemented as part of said middleware, which reduce
the number of cold starts while considering the FaaS platform a
black box. Through a large number of experiments, we could show
that our approaches remove an average of about 30-40% and in
some cases up to 80% of all cold starts at low monetary cost.
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