Benchmarking Microservice Performance:
A Pattern-based Approach

Martin Grambow
TU Berlin & Einstein Center Digital Future
Mobile Cloud Computing Research Group
mg@mcc.tu-berlin.de

Erik Wittern*
IBM, Hybrid Cloud Integration
erik.wittern@ibm.com

ABSTRACT

Benchmarking microservices serves to understand and check their
non-functional properties for relevant workloads and over time.
Performing benchmarks, however, can be costly: each microservice
requires the design and implementation of a benchmark, possi-
bly repeatedly as the service evolves. As microservice APIs differ,
benchmarking tools that assume common interfaces — like ones for
databases — do not exist.

In this work, we present a pattern-based approach to reduce
the efforts for defining microservice benchmarks, while still al-
lowing to measure qualities of complex interactions. It assumes
that microservices expose a REST API, described in a machine-
understandable way, and allows developers to model interaction
patterns from abstract operations that can be mapped to that APL
Possible data-dependencies between operations are resolved at run-
time. We implement a prototype of our approach, which we use to
demonstrate that it can be applied to open-source microservices
with little effort. Our work shows that pattern-based benchmark-
ing of microservices is feasible and opens up opportunities for
microservice providers and tooling developers.

CCS CONCEPTS

« Information systems — RESTful web services; » Software
and its engineering — Software performance; Specification
languages; - Applied computing — Service-oriented architectures;

ACM Reference Format:

Martin Grambow, Lukas Meusel, Erik Wittern, and David Bermbach. 2020.
Benchmarking Microservice Performance:, A Pattern-based Approach. In
The 35th ACM/SIGAPP Symposium on Applied Computing (SAC "20), March
30-April 3, 2020, Brno, Czech Republic. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3341105.3373875

“Work done while at IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC °20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6866-7/20/03....$15.00
https://doi.org/10.1145/3341105.3373875

Lukas Meusel
TU Berlin & Einstein Center Digital Future
Mobile Cloud Computing Research Group
Ims@mcc.tu-berlin.de

David Bermbach
TU Berlin & Einstein Center Digital Future
Mobile Cloud Computing Research Group
db@mcc.tu-berlin.de

1 INTRODUCTION

The complexity of today’s software artifacts and its requirements
are steadily growing. Thus, modern applications often rely on a
microservice architecture to ease the development process(es), the
deployment, and the operation of a complex software system with
many components [20]. Instead of one large monolithic system, the
business logic of an application is distributed across many small
services which execute their specific tasks according to the UNIX-
philosophy “Make each program do one thing well” [22].

While the functional requirements of individual microservices
can be checked by specifying unit and integration tests, there are
some challenges in ensuring non-functional requirements. State
of the art live testing techniques coupled with monitoring include
canary releases [14] or dark launches [9], which deploy a new ver-
sion of the service in the production environment and assess its
functionality and non-functional characteristics on a (small) share
of actual traffic. However, live testing is not possible when there
is no production system (e.g., in early development stages), when
testing for non-current workloads (e.g., testing the Christmas traf-
fic of the shopping cart service in July), or when exposing even
a fraction of actual traffic to a new, untested service is too risky.
Thus, an alternative but complementary approach to live testing or
monitoring is to benchmark the new version of a microservice. In
contrast to live testing, benchmarking evaluates a microservice in
a well-defined and isolated testbed which can also include related
services. Benchmarking allows the evaluation of non-functional
requirements — such as performance - of microservices in specific
environments, for specific workloads, and over time. For example,
running the same benchmark in a controlled environment as the
microservice evolves over time can point to performance regres-
sions (or improvements). Benchmarking, however, can be costly to
perform. Besides the setup procedure for the testing environment,
workloads have to be defined, the benchmark run has to be moni-
tored, and finally the results must be analyzed to decide whether
the requirements were met.

In other domains such as database benchmarking, there are a
variety of tools, e.g., YCSB [1, 6, 8], which make use of the common
interfaces of database systems to achieve automated, repeatable, and
comparable benchmarks even as part of Continuous Integration and
Deployment pipelines [13, 31]. For microservices, however, inter-
faces and the typical requests they expect vary with every service,

https://doi.org/10.1145/3341105.3373875
https://doi.org/10.1145/3341105.3373875

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

making it impossible to find a general interface for microservice
benchmarking.

In this paper, rather than relying on a standardized interface, we
rely on the Representational State Transfer (REST) architectural
style commonly used by microservices for pattern-based bench-
marking of microservices. In our approach, users define abstract
and reusable interaction patterns which are resolved to the actual
workload at runtime automatically. Introducing this level of ab-
straction eliminates the need to implement or adjust benchmarks
for every change in the service interface (e.g., if the parameter set
has changed). Our approach thus reduces the effort for developers
while still ensuring that benchmarks fulfill important characteris-
tics, namely that they are relevant, repeatable, portable, verifiable,
and economical [4]. In this regard, we make the following contri-
butions:

(1) An approach to benchmark REST microservices based on
abstract and reusable interaction patterns.

(2) An open source proof-of-concept prototype implementing
our pattern-based benchmarking approach.

(3) The evaluation of our approach by benchmarking three open-
source REST microservices.

Please note that providing a complete pattern catalog is beyond
the scope of this paper, but applying our approach in practice obvi-
ously requires a comprehensive set of interaction patterns.

The remainder of this paper is structured as follows: After outlin-
ing relevant background in Section 2, we present our pattern-based
benchmarking approach in Section 3 and its evaluation in Section 4.
We discuss our approach in Section 5 and present related work in
Section 6 before concluding in Section 7.

2 BACKGROUND

This section outlines relevant designs principles and paradigms
used in this paper.

2.1 Microservices

Lewis and Fowler [20] describe microservices as independently
deployable and scalable components. In contrast to a monolithic
system which combines all application logic in a single artifact,
the microservice architecture splits the logic into a suite of ser-
vices that communicate with one another over network. Within an
application, individual services can be written in different program-
ming languages or use different storage technologies, resulting in
a heterogeneous environment. Being separate deployment units,
individual services can independently be shut down, replaced or
updated at will, or new service instances can be deployed at runtime
to counteract performance bottlenecks. Given these characteristics,
all services must be designed to tolerate failures, as no service can
expect correctly typed data or assume that a required service is
always available. A challenge for microservice architectures is the
lack of debugging and logging capabilities, especially in complex
setups including a multitude of services.

2.2 REST APIs

Microservices communicate over the network, relying on networked
application programming interfaces (APIs). APIs can differ in the
communication protocols (e.g., TCP, HTTP) and data formats (e.g.,

M. Grambow et al.

JSON, binary data, XML) they rely on. In this work, we focus on
APIs following the REST architectural style. Being heavily inspired
by HTTP, REST APIs evolve around resources being identified by
hierarchical URLs, and use HTTP methods to interact with these
resources (e.g., POST to create one or GET to receive one). REST
APIs do not rely on client state (stateless), and evolve around the
communication of resource representations (typically in JSON or
XML) between clients and servers [27].

Richardson’s maturity model [11] divides REST APIs into three
levels: While level 0 APIs use HTTP only to tunnel requests to
an endpoint, level 1 introduces resources which can be addressed
following hierarchical URIs. Level 2 additionally demands that APIs
use HTTP verbs to indicate whether to create (POST), get (GET), up-
date (PUT or PATCH), or delete (DELETE) a resource. Finally, level
3 inserts links (URIs) to corresponding services and or resources
into the server responses at runtime, realizing RESTful APIs. In
this paper, we assume APIs to comply at least with level 2 of this
maturity model - specifically, we rely on the use of HTTP methods
for defining abstract operations.

2.3 Interface description

In addition to human-readable API documentation targeting (client)
developers, REST APIs are often described in a machine-understand-
able way using description files such as OpenAPI ! or RAML 2. For
the sake of simplicity, we decided to only consider OpenAPI in
our work as possible interface contract.> OpenAPI files are written
in YAML or JSON and describe where to reach an API, available
operations, and its expected inputs and possible outputs. Although
the current version, OpenAPI 3.0, supports so-called link definitions
to express relationships between two requests, they are not designed
to describe complex interaction patterns which we develop and
present in this paper.

2.4 Benchmarking

Benchmarking “is the process of measuring quality and collecting
information on system states” [4] and can be applied to compare
different software versions, configurations, system alternatives,
or deployments. In benchmarking, a measurement client runs an
application-driven workload multiple times against a system or ser-
vice under test (SUT), typically in a non-production environment,
and evaluates the outputs in a subsequent offline analysis to deter-
mine its quality of service (QoS) while complying with various gen-
eral benchmark requirements, e.g., [4, 15]. Benchmarking requires
a very high degree of control over the SUT to make results repro-
ducible. In contrast to monitoring, which is about non-intrusive and
passive observation of a (production) system, benchmarking aims
to answer how a system will react on specific changes or stresses,
and is about comparison of systems or deployments.

3 PATTERN-BASED BENCHMARKING

Our pattern-based benchmarking approach relies on the observa-
tion that there are sequences of interactions with resources in REST

!https://swagger.io/docs/specification/about/
Zhttps://github.com/raml-org/raml-spec/

3Translations between formats are possible, using for example https://apimatic.io/
transformer.

https://apimatic.io/transformer
https://apimatic.io/transformer

Benchmarking Microservice Performance:
A Pattern-based Approach

Operation Description

CREATE Creates and returns an item.

READ Reads an item based on some filter (e.g., an ID) and
returns the requested item.

SCAN Reads multiple items based on some (optional) filter
(e.g., a keyword) and returns the results.

UPDATE Modifies an item based on some filter (e.g., an ID)
and returns it.

DELETE Deletes an item based on some filter (e.g., an ID).

Table 1: Extensible list of abstract operations which are com-
bined to abstract interaction pattern.

APIs which recur across APIs. One common example is to list re-
sources of a specific type (e.g., by performing GET .../users), to then
retrieve information about one specific resource (e.g., by performing
GET .../user/1), and finally updating that resource (e.g., by perform-
ing PUT .../users/1). Based on this observation, we argue that it is
possible to automatically generate benchmarking workloads from

e an abstract description of such patterns and
o a description of how to interact with the microservice’s API
(e.g., OpenAPI).

In this section, we start by describing the challenges in gen-
erating such a pattern-based workload. Next, we introduce our
pattern-based solution in detail and finally give an overview of our
approach’s system design.

3.1 Challenges

We have identified the following three major challenges facing our
approach:

(A) The first challenge is to define patterns and workloads for
arbitrary services, including the total number of requests
and their distribution across patterns.

(B) Once defined, the individual patterns must be mapped to
the service URI path and method. Here, an abstract pattern
composed of multiple operations (e.g., listResources) must
be linked to service-specific resources (e.g., a list of users
or products) and its operations (e.g., GET ../users and GET
../products).

(C) Finally, the abstract requests must be filled with concrete pa-
rameter values depending on the interface definition which
is, especially for successive requests, hard because parameter
values may depend on the outcome of previous requests.

3.2 From Abstract Pattern Definition to
Service-Specific Workloads

The key idea of our approach is to define an abstract workload
separately from the service itself and to resolve the actual service-
specific workload at runtime. To address the challenges outlined
above, which also have interdependencies, we divide this process
into six steps (described in detail later). While challenge A is solved
in the first two steps, steps 3 and 4 aim to cope with the difficulties
described in Challenge B. Finally, challenge C, the actual workload
generation, is covered in the steps 5 and 6.

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Step Operation Input Selector

1 SCAN - - list
2 READ list RANDOM item
3 UPDATE item - -

Table 2: Abstract interaction pattern which requests multi-
ple resources, reads one random item from the resulting list,
and finally updates the selected item.

Output

(1) Pattern definition: Define abstract interaction patterns.

(2) Workload definition: Enhance pattern definition and spec-
ify frequency and ratio of requests.

(3) Binding definition: Optionally, overwrite default resource
bindings.

(4) Binding enactment: Bind pattern configuration to resource
paths and service operations.

(5) Workload generation: Create service-specific workload.

(6) Benchmark execution: Run the workload against the SUT
and substitute values at runtime.

Step 1 - Pattern definition: The first step is to define abstract
interaction patterns that are independent of the microservice, but
still applicable to it.

Following the second level of Richardson’s maturity model, the
typical REST CRUD operations can be mapped to HTTP methods:
A new resource can be created at a resource endpoint by calling
the POST HTTP method and accessed following a path structure
at that endpoint. Individual resources can be read (HTTP GET),
updated (HTTP PATCH or PUT), and deleted (HTTP DELETE).
Finally, multiple resources can be listed by sending an HTTP GET
to a list operation (e.g., GET ../search) which potentially may return
multiple items. In the very first step of our approach, we use these
basic interactions to define the abstract operations shown in Table 1
which we will later use to bind abstract patterns to concrete service
resources.

While almost all of these interactions refer to a specific single
resource, reading can request both, a single resource and multiple
resources; we therefore split reading into READ (single) and SCAN
(multiple). Most operations require some filter information about
the item to read, to update, or to delete. These do not only include an
id or key of the requested resource, but also further domain-specific
values if multiple items should be read (SCAN). Furthermore, we
introduce selectors as part of these filter information: If a list of
items serves as input for an operation, the selector determines
which item to pick from that list (e.g., first, last, or random item).

Our abstract operations already cover the common CRUD in-
teractions with REST services. If necessary, our approach can be
extended with further basic operations. Using the available basic
operations, we can now compose an interaction pattern as a se-
quence of abstract interactions. Thereby, each interaction is linked
to an operation, an abstract resource, and optional filter informa-
tion. Moreover, it must define where to put output values of an
interaction and from where to read input values.

The complete interaction pattern for the abstract example from
the beginning of this section is shown in Table 2: First, a SCAN

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

operation determines all available resources on a service resource
endpoint and stores the resulting values in a variable called list.
Next, an individual value is picked by a RANDOM selector from this
list, the corresponding resource is read, and stored into a variable
called item. Finally, the selected item is updated.

Step 2 — Workload Definition: The next step is to specify the
actual workload which should be executed against the SUT. Similar
to the business transactions in BenchFoundry [1], a pattern defi-
nition can include optional conditions for individual patterns (e.g.,
waiting times between operations to mimic realistic user behavior).
Comparable to YCSB [6], which defines a workload based on a
total number of operations as well as the respective share of each
database operation, we define a workload based on three pieces
of information: first, the list of all patterns which shall be used;
second, the total number of pattern invocations; third, the share or
weight of each pattern. At execution time, multiple such patterns
are (likely to be) executed in parallel.

Step 3 - Binding Definition: This optional binding definition
step can be used to manually bind patterns to service resource(s).
If used, this information overrides the default binding from Step 4
described below.

As one usage scenario, microservices sometimes provide multiple
resource endpoints (e.g., /users and /orders) which can be used by
the benchmarking client for an interaction pattern. By default,
all possible resource endpoints and operations are used by the
benchmark. When, however, the automatic binding from pattern to
resource and operation should be suppressed or overridden (e.g., in
case that only the /users resource endpoint should be benchmarked),
this can be achieved through a manual binding.

As another usage scenario, a manual definition can also be ap-
plied in cases in which single operations differ from the actual
resource path. For example, if a service offers the endpoints /users
and /register, then the latter one must be manually bound to the ab-
stract CREATE operation of the /user endpoint to make the pattern
execute.

In the following, we will refer to the abstract interaction patterns
defined in Step 1, the workload definition from Step 2, and the
optional binding definition as pattern configuration.

Step 4 - Binding Enactment: As already described above, our
approach for automated binding enactment relies on a number of
key ideas: First, REST operations can directly be mapped to the
corresponding HTTP methods, e.g., a create is mapped to an HTTP
POST. Second, a microservice which complies with the second level
of Richardson’s maturity level exposes its operations in a way that
is compliant with the REST operation semantics, e.g., creating a
new user will always be exposed as a create which can then be
mapped to POST. Third, the input and output of these operations as
well as the corresponding data schema are described in the interface
description file, i.e., in our case, the OpenAPI file, so that we can link
the output of one operation to the input of another. This allows us to
create the cross-operation links in our interaction patterns. Finally,
the interface description also provides information on where to
find the microservice, hence, we can actually invoke it once we
have completed all the mappings as described above.

M. Grambow et al.

Resource & Method Operation Matching m

Juser Patternl
— get |-
—>| post I
Juser/{name}
—{ get |=——{ READ |[4e—| READ |
o

UPDATE [4—| UPDATE |

o

ut

©

Resource & Method Operation Matching m

RE
get f—| SCAN [4s{ SCAN }
RN

get | READ |4e—| READ |

Figure 1: Matching two resource paths to an abstract inter-
action pattern, only one path (/user) is supported.

Based on the reasoning above, we can automatically generate a
binding between an interaction pattern and the actual sequence of
HTTP calls — subject to the conditions above, e.g., that creating a
new user is not exposed as a PUT. In the following sub-steps, we
describe how we verify that an automated binding can be created*:

Step 4.1 — Matching: A pattern can be mapped to a resource

path if this path supports all required operations of the pat-
tern. Figure 1 illustrates this for an example with two re-
source paths and the abstract pattern given in Table 2: While
the /user path supports all abstract operations of the pattern,
the /order path does not support the UPDATE operation.
Thus, the pattern is only mapped to the /user resource path.
While it is easy to determine the operation for creation,
modification, and deletion as they directly map to an HTTP
method by convention, this is more difficult for the SCAN
and READ operation. Here, we have to inspect the resource
path a bit further and check if it ends with an input parameter.
If so, the parameter refers to a key or an id and supports the
READ operation; If the resource path does not end with a
parameter and returns an array of items, it can be bound to
the SCAN operation.
If all operations in an abstract interaction pattern are sup-
ported by a resource path, we bind them (if nothing to the
contrary is demanded in the manual binding definition) and
create a map from interaction pattern to a list of supported
resource paths and their available methods.

Step 4.2 — Resolving Dependencies: Next, we verify that all
interactions can be theoretically carried out based on the
service description. In the example from above, a specific

4If there are bindings defined in Step 3 which already explicitly map a pattern to
specific resource paths and operations or exclude some, this information overrides the
following default mapping. In that case, the approach only verifies that it can indeed
resolve the manually specified binding.

Benchmarking Microservice Performance:
A Pattern-based Approach

user with a user id (identified by that id in the resource path)
can only be requested if that user id is part of an earlier
service request or response. Thus, we iterate over the pat-
tern and try to resolve all dependencies by matching the
described input and output of previous abstract operations
to the required input of the current one by its name (the
name defined in the abstract interaction pattern). If there
are unresolved dependencies for a previously mapped pair
of abstract pattern and resource path, we remove that path
from the corresponding list because the pattern cannot be
executed. For example, if the output of the first operation
shown in Table 2 would be named “itemlist” and the input
for second operation would still be “list”, the dependency
could not be detected and resolved.

Step 4.3 - Ensuring Executability: Finally, having concluded
the mapping and dependency resolution for every interac-
tion pattern, we check if there is at least one resource path
left which supports the pattern configuration and all of its
abstract interaction patterns. Otherwise, the pattern con-
figuration cannot be executed and we have to cancel the
benchmark process as there is no resource path to interact
with. Typically, users would then return to Step 3 to define
manual bindings or return to Step 1 to modify the pattern
definition.

Step 5 — Workload Generation: With the previously created map-
ping and the interface description, we can finally generate the
benchmark workload by building HT TP requests which follow the
interaction patterns and the restrictions in the interface descrip-
tion. First, each pattern operation can be directly resolved to an
HTTP method based on the binding. Next, we can fill the required
parameters and request body content of each request by inspect-
ing the interface description and generating random values for all
interactions: In OpenAPI, complex parameter values and request
bodies are described using JSON Schema.> We can use these de-
scriptions to generate the required data items filled with random
values. Moreover, we can generate use-case specific values such
as product names or Bitcoin addresses by augmenting the service
description with special keywords.

As stated above, some content of the individual requests may de-
pend on the returned values of previous calls (e.g., identifier values).
These values must be injected later in the benchmark execution
phase (Step 6) for which we use special markers. Nevertheless, once
the required number of pattern executions has been generated, the
workload can be persisted and reused across several benchmark
runs even if the generated workload is incomplete in that sense.

Step 6 — Benchmark Execution: As already stated above, some
values of the workload must be replaced during the execution if
there are dependencies between requests. For these values, there
are many different sources depending on the concrete operation:
A create operation could, for example, return the id of the created
item or respond with an HTTP 200 status code if the id was part
of the request and the item was created successfully. Depending
on the implementation, the subsequent read request must pick the

Shttps://json-schema.org/

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Dependent Current Abstract
Request Request Operation

- Headers - Headers - Operation

- Parameter - Parameter - Input

- Body - Body - Selector

- Status - Output

- Response

- Link Info

[Detect & Resolve Dependencies |

nel @ Tyes]

Undefined Updated Request

Figure 2: Linking two related requests based on the content.
If a link is detected, the successive request is updated and
returned.

id from the response or the request body of the preceding request;
this, however, only if the response was an HTTP 200 status.

For purposes such as these, we have designed the linking unit
interface, illustrated in Figure 2: A linking unit tries to find and
resolve dependencies based on the preceding request (including
message body, response, etc.), the current request (including the
values to be replaced, e.g., a parameter), and the abstract pattern
operation. If a linking unit detects a link, it resolves the dependency,
e.g., by replacing the placeholder value in the current request body
with some value from the parameters of the previous one, and
returns the updated request or "undefined" otherwise. This way,
it is possible to apply multiple linking units successively until a
dependency is resolved and it also offers the possibility to order
the application of several units hierarchically (e.g., general or very
service-specific units first).

Currently, we have identified three different types of linking
units but additional, potentially service-specific, custom units can
be added:

e OpenAPI Link Linking Unit: OpenAPI 3.0 offers the pos-
sibility to define links which describe further operations and
their content after a query. This linking unit inspects the
link definitions of the preceding request and replaces the
values of the current request accordingly.

e Parameter Name Linking Unit: Individual resources can
often be accessed by following a path structure in REST inter-
faces, e.g., /{username). These parameters were initially filled
with placeholder values in Step 5 which have to be adjusted
now to access actually existing resources. This linking unit
searches for these values in the preceding request based on
the parameter name. If exactly one element with this name
as key is found in the request (either in parameter values,
request body, or response), this value is used in the current
request. If there are multiple values to choose from, one is
picked according to the selector (e.g., pick a random value).

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

o ID Linking Unit: In some cases, the parameter names in
the preceding and current requests do not match exactly.
For example, a user is created with a field named "id" in the
request body and individual users can be accessed via the
path /fuserID}. This linking unit resolves dependencies by
searching field names for the substring "id" and replacing
values in the same fashion as the parameter name linking
unit.

e Custom Linking Unit: Finally, as dependencies cannot al-
ways be detected and resolved with our defined linking units,
there is also the possibility to define custom and service-
specific units which can be added to the application chain of
units by implementing the linking unit interface.

3.3 System Design

Our system design comprises a number of components; these —
along with the corresponding steps — are shown in Figure 3. The
Workload Generator creates a service-specific workload based on
an API description file, a pattern configuration, and optional bind-
ing definitions (steps 1 to 3). Once the Workload Generator has
bound the interaction patterns to supported resource endpoints
(Step 4), it generates the service-specific but incomplete workload
(Step 5). As a pattern execution is by definition independent of other
pattern executions (otherwise, they should be merged), we can par-
allelize pattern execution and also distribute this execution across
a number of Worker Nodes. Similar to the method proposed in [1],
the Benchmark Manager does this by partitioning the workload
into worker packages to enable concurrent execution (the num-
ber of packages corresponds to the number of concurrent Worker
Nodes), then distributes the worker packages among the available
Worker Nodes, manages the (concurrent) benchmark execution,
and collects the results. Finally, as our approach is intended for
use in Continuous Integration and Deployment pipelines [13, 31],
the Benchmark Manager compares the observed metrics to prede-
fined requirements and constraints such as service level agreements
(SLASs) to ultimately decide on success or failure of the benchmark
run.

Within a worker package, requests across patterns can be in-
terleaved as long as requests within a pattern are not reordered.
As some requests depend on the outcome of preceding ones (e.g.,
the update method requires the resource id which was part of the
result from a previous create call), the Worker Nodes cannot simply
read the generated workload and run the requests against a service
endpoint, but must adapt some values at runtime with the outcome
from posted requests based on the linking units (Step 6).

4 EVALUATION

To evaluate our pattern-based approach, we implemented a proof-
of-concept prototype and benchmarked three different open-source
REST microservices. Our goal is to assess the applicability of our
approach to different services, while the results of the benchmark
runs are secondary. In this section, we first present our proof-of-
concept implementation and describe the microservices which we
benchmarked. Next, we describe how we followed the individual
steps of our approach to create and run a pattern-based benchmark

M. Grambow et al.

Interface
Description

Step 1 Pattern
Step 2 Config.

Workload
Generator

Step 4
Step 5

Binding
Definition

Intermediate
workload

Step 3

Benchmark
Manager

E

Linking
Units

Benchmarking
Worker

Legend Stepld l
D - In-/output (..]
] oz
- Component
— —
- Step SUT

Figure 3: Overview of our system design and setup including
input and output documents.

workload for each service and briefly outline the measured results.
Finally, we summarize our evaluation findings.

4.1 Proof-of-concept Implementation

We implemented our approach and system design as an open-source
proof-of-concept prototype © written in Kotlin. Our prototype imple-
mentation can be integrated in an existing Continuous Integration
or Deployment pipeline and comprises three components:

(1) A graphical web frontend to interact with the Workload
Generator and Benchmark Manager.

(2) A server backend that includes the Workload Generator and
the Benchmark Manager.

(3) A Worker Node which runs the workload, resolves depen-
dencies between successive requests using linking units, and
measures the runtime of each operation to report the results.

Our prototype uses the open-source library json-schema-faker’
to generate data for the workload. The library allows us to gener-
ate the required JSON elements for the individual HT TP requests
based on the schema information in the OpenAPI description file.
Moreover, our prototype also supports special faker-keywords (de-
fined by the library Faker.js®) which can be added to the OpenAPI
file. These additional keywords can be used to generate realistic
and use-case-specific workload values (e.g., names, product ids, or
dates).

4.2 Services

As we want to show the general applicability of our proposed ap-
proach in realistic scenarios, we decided to benchmark the following
three different open-source REST microservices:

®https://github.com/martingrambow/openISBT
https://github.com/json-schema-faker/json-schema-faker/
8https://github.com/marak/Faker.js/

Benchmarking Microservice Performance:
A Pattern-based Approach

Pattern Step Operation Input Selector Output

CRE 1 CREATE - - item
2 GET item - -

LST 1 SCAN - - list
2 READ list RANDOM item

UPD 1 SCAN - - list
2 READ list RANDOM item
3 UPDATE item - -

DEL 1 SCAN - - list
2 READ list RANDOM item
3 DELETE item - -

Table 3: List of evaluated patterns which were ran against
the select microservices.

Petstore: The petstore’ is a microservice maintaining pets and
users. It is a simple service which is often used in tutorials to show
how the interface description language OpenAPI works and covers
almost all aspects of it.

Teams: The Flask-RESTplus Example API' is a popular (more than
800 stars on GitHub) REST microservice which organizes users into
teams.

Sock Shop: This microservice-based Webshop!! simulates all parts

of an e-commerce application including orders, payments, and users.

Nevertheless, for our evaluation we only used the resource paths

/customers and /register of the user service!2.

4.3 Experiment

In line with our proposed process, we ran the following experiments
to evaluate our pattern-based benchmarking approach:

Step 1 - Pattern Definition: We evaluated the outlined REST
microservices with four self-defined abstract interaction patterns
as shown in Table 3: First, a creation pattern (CRE) which creates a
resource and verifies that it can be accessed. Second, a list pattern

(LST) which lists available resources and reads an item from that list.

Third, an update pattern (UPD) which identifies and then updates
a resource and fourth, a deletion pattern (DEL) which picks and
deletes one.

In steps which require to pick an item from a list, we always used
a random selector for simplification, but there might be services for
which another selector makes more sense, e.g., picking the oldest
item. Moreover, we want to emphasize again that these patterns
are examples only, as our goal was not to identify a comprehensive
pattern catalog.

Step 2 - Workload Definition: In this evaluation, we aim to show
the general functionality and applicability of our approach and not
to rate the performance of the microservices in detail. Thus, we
decided to run rather small workloads and to use one benchmark

“https://github.com/OpenAPI Tools/openapi-petstore
Ohttps://github.com/frol/flask-restplus-server-example
https://microservices-demo.github.io/
2https://github.com/microservices-demo/user

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Service Pattern
Resource CRE LST UPD DEL
Petstore
/pet v Y v v
/user v - - _
/store/inventory - - - _
/store/order v - - _
Teams
/teams Vv Vv v Vv
/users v v vV -
Sock Shop
/customers v v - v
/cards) o) -)
/addresses -)) -)

Table 4: Matching of evaluated service resources and pat-
terns. Resource paths are either supported [v'], not sup-
ported [-], or not yet supported [(-)].

run only. In practice, however, these parameters must be adapted to
fulfill the benchmark requirements, e.g., regarding runtime. For our
experiment we ran 1,000 pattern requests in total and distributed
them among the individual patterns equally. Furthermore, we ran
an initial preload phase which inserts 1,000 data items in advance
for each microservice.

Step 3 — Binding Definition: The /customers endpoint of the Sock-
Shop’s user microservice does not offer a method to create new
customers. Instead, new customers can be added via the /register
path. For this reason, we inserted an additional manual binding
definition and overrode the automatic binding behavior to support
the CRE pattern for this endpoint. Besides this custom binding
for the Sock Shop service, we did not define any further manual
bindings.

Step 4 - Binding Enactment: Here, we bind our defined patterns
to the evaluated microservices and its resources. Table 4 outlines the
resulting binding for each service with every interaction pattern,
including our manual binding definition from Step 3.

As the abstract SCAN operation is only supported by the /pet
resource path in the Petstore service but part of the UPD, LST, and
DEL pattern, all other resource paths cannot be benchmarked with
the given workload definition. Thus, the /pet path is the only one
for the Petstore microservice.

Although the Teams service manages users and teams, it does
not provide the ability to delete users. Therefore, only one resource
path (/teams) is tested for this service as well.

The Sock Shop service does not offer an update operation at all
but all other operations to support the CRE, LST, and DEL pattern
for all resource paths. Thus, we decided to adjust the workload
definition slightly for this service and only execute these three
supported patterns. Moreover, the resource endpoints /cards and
/addresses require an existing user ID which need to be provided in
requests. Currently, our implementation does not have a linking
unit for “out of pattern data” (which would be statically defined

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

1800
1600 | Petstore] -
Teams
1400 - o0k Shop 1 1
1200 + =
1000 +
800
600
400

200

Pattern Duration [ms]

(missing endpoint)

CRE LST UPD DEL

Pattern

Figure 4: Duration of pattern execution with n=1,000 mea-
surement per service and pattern.

prior to the benchmark run) so that we only benchmarked the
/customers endpoint.

Step 5 — Workload Generation: To generate the workload for our
experiments with our prototype, we had to adjust the OpenAPI files
slightly for the following reasons. First, our prototype currently
only supports JSON data so that we removed some parts, e.g., XML-
related definitions. Furthermore, we had to add some definitions
to the description if the evaluated service requires an API key
or OAuth authorization; e.g., we added an enum with only one
element (the API key) to the corresponding scheme or defined
three different tags for pets in the Petstore microservice. Finally,
we also had to convert!3 the service descriptions of the Teams and
Sock Shop microservice to the current OpenAPI version 3.0 for
implementation reasons.

Step 6 — Benchmark Execution: We ran our benchmarks on AWS
EC2'* instances, all in the same availability zone. For each experi-
ment, one SUT instance was running the examined microservice
and two instances were running a Worker Node with five threads
each to ensure that the benchmarking client is not the bottleneck
and that the SUT experiences a certain load. Since the measurement
results themselves are irrelevant, we particularly did this to show-
case the scalability of our approach based on the Worker Nodes.
Moreover, a fourth instance hosted the Benchmark Manager.

Our experiment benchmarked three different REST microser-
vices with almost identical pattern configurations (as explained
above, we excluded the UPD pattern for the Sock Shop service). All
three services were running in Docker containers and were set up
in advance. Even though the services are too different to compare
and the usage of Docker might introduce an additional bias [12],
Figure 4 gives an overview of the benchmark results as determined
by our prototype (latency at pattern level). While actual results are
irrelevant, this shows the applicability of our approach and hints
that the performance of different microservices varies.

Bhttps://mermade.org.uk/openapi-converter
4aws.amazon.com/ec2/

M. Grambow et al.

4.4 Summary

As described above, our prototype could benchmark three popu-
lar microservice examples with minimal adaptation effort. After
initializing all services, our proof-of-concept implementation bench-
marked the microservices (almost) out of the box and only a few
changes in the description file were necessary (e.g., we had to
replace the service URL or introduce an enum for the API key).
Moreover, we had to define an abstract workload which is, in our
evaluation example, a JSON file with less than 100 lines (which
however would be reusable across a variety of services in different
versions) and we had to define one manual binding for the Sock-
Shop service which comprises about 20 lines. All in all, we could
design and setup the benchmark for all evaluated microservices
in less than an hour in total which significantly reduces the effort
necessary to benchmark a microservice: there is simply no need
anymore to manually implement a benchmark (tool) from scratch
which can also be quite challenging [2].

Furthermore, our evaluation only considered the performance
(pattern duration) of the examined microservice. In practice, how-
ever, other aspects such as consistency or scalability can also be
evaluated.

5 DISCUSSION

As the evaluation shows, our approach can be used to benchmark
REST microservices based on their service description but, nev-
ertheless, there are some points to consider when applying our
pattern-based approach and which we want to discuss in more de-
tail here. Moreover, we also present current limitations and propose
possible solutions for them.

Our design generates a synthetic and traced-based workload
based on a pattern and workload definition. Defining a proper
workload comes with its own challenges (which, however, is not
specific to this approach). If a workload definition creates more
resources than deleting existing ones, the list of resources grows
with every iteration and may produce unrealistic workloads. E.g,
the workload definition from our evaluation may fit the teams
service because the number of teams is usually constant (about the
same number of additions and deletions) but, on the other hand,
it may not fit the user service well, where the number of users
usually increases during the service lifetime because there are more
new users registering than existing ones leaving. Thus, the actual
patterns and a realistic distribution of these patterns has to be
considered when defining the workload (e.g., by inspecting the
log files to identify common interactions and their frequency [16]).
This also implies that an existing workload based on a common
pattern catalog yet to be defined cannot be applied blindly to other
microservices.

Next, our approach relies on the semantics of REST-based in-
terfaces and assumes HTTP-based microservices. Microservices
using other communication protocols can be used as well but essen-
tially require manual bindings for every operation. Since the basic
CRUD semantics exist independent of the protocol used, it will be
interesting to see whether there are common ways in which these
are exposed in non-REST-based microservices and whether these
could be leveraged by our approach. E.g., the abstract operations
could be mapped via the function name instead of the HTTP verb.

Benchmarking Microservice Performance:
A Pattern-based Approach

Nonetheless, our approach can already be used for a large variety
of microservices for which there are no benchmarking alternatives
yet.

While not every pattern and workload definition can be blindly
applied to every REST microservice, our approach allows devel-
opers to run a benchmark against REST services which share the
same characteristics in general, which is helpful in several situa-
tions: First, every new service version can be compared to older
versions as long as the individual changes do not alter the basic
characteristics of the microservice. This is particularly important
for use in Continuous Integration pipelines [13, 31]. Second, if the
API changes (e.g, a new parameter is introduced or a schema is ad-
justed), nothing but the interface description file must be replaced
(ideally, this description is generated from the microservice’ source
code with every build) and the benchmark adapts automatically,
there is no need to adjust workload files or source code. Third, our
approach can be used to evaluate different services which share
the same purpose (e.g., user management). This is particularly use-
ful when replacing a microservice with a new one as both can
be benchmarked and compared extensively prior to switching in
production.

Beyond considering the approach itself, there are also some limi-
tations of our prototype: Some operations require values from other
resource endpoints or even other services. Our current prototype
can partially solve this issue by defining custom binding definitions
but this is not sufficient to cover all use cases. For example, the
evaluated Sock Shop service offers the /cards endpoint but all of-
fered methods require an existing userID which is not retrieved or
created as part of the respective pattern. Thus, a new user must
first be created or at least an existing user must be retrieved from
the /customers endpoint and this is currently not covered in our
prototype. To solve this issue, we plan to make use of OpenAPI’s
link definitions'® or to implement a resource pool which shares
these resource identifiers across Worker Nodes. Based on link defi-
nitions, we could issue additional preparing operations before the
start of a pattern execution. Moreover, our current version also
do not support sub-resources or considers pagination. Currently,
only the first results of a SCAN request are evaluated, but users can
apply suitable filters to limit pagination issues. For sub-resources,
we plan to extend the pattern definition to also include operations
on sub-resources and interactions with them. Finally, our prototype
is currently limited to benchmarking single services; patterns that
invoke multiple microservices can easily be used with our approach
but have not been added to our prototype yet.

Overall, we believe that our approach and its prototypical im-
plementation are useful for a large percentage of microservice
deployments as they significantly reduce the implementation effort
for microservice developers. Some restrictions such as the REST
requirement apply but could also serve as an incentive to switch
to REST in some cases where other communication solutions are
used for legacy reasons.

6 RELATED WORK

Benchmarking is a well-established method in the IT domain to
quantify and verify quality of service of hardware or software

Bhttps://swagger.io/docs/specification/links/

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

systems [4]. There is a large number of benchmarks for differ-
ent kinds of SUT, especially for database and storage systems,
e.g., [1, 8, 18, 23, 25], but also for virtual machines, e.g., [5, 29],
web APIs [3], or cloud-based queueing systems, e.g., [19]. To the
best of our knowledge, however, there is currently no approach (or
even a tool) for benchmarking microservices. We believe that this
is largely due to the fact that microservices do not come with the
common interface typical to other system domains such as POSIX
for virtual machines or SQL and CRUD interfaces for data manage-
ment. Without such a common interface, it becomes quite hard to
implement a benchmark that complies with standard benchmark
requirements — especially portability [2, 4, 10, 15, 30].

Nevertheless, there are some approaches and tools which could
ease microservice benchmarking beyond building a complete bench-
mark from scratch: Load generators such as Artillery I0'® or LoadUI"’
can run a defined and service-specific workload against a microser-
vice. By manually defining scenarios which represent typical inter-
actions, a service-specific workload can be created with parameters
settings which include the amount of request or the distribution
of scenarios. While it is possible to import service description files
and external data items as “workload”, this is always specific to a
particular microservice and its respective version, i.e., there is no
portability. With our approach, on the other side, arbitrary REST
microservices can be benchmarked as long as the service supports
the respective interaction patterns.

Zheng et al. [32] also use interaction patterns comprised of basic
operations (create, get, delete) for benchmarking but do so for object
storage services. Their approach relies on the standard interface
defined by CDMI and, hence, does not have to deal with interface
heterogeneity. Beyond these, there are several systems which could
be (mis)used as a load generator. Benchmarking systems such as
YCSB [6] or NDBench [24] can be used to create synthetic work-
loads against a CRUD endpoint. While these tools are very powerful
load generators — particularly when considering the broad range
of configuration options — they completely disregard the mapping
from the generic CRUD to a specific microservice. Although cre-
ating such a mapping will be possible for a large percentage of
microservices, actually programming the mapping still remains a
manual effort that needs to be repeated for every microservice and
version that shall be benchmarked. Furthermore, we believe that
benchmarking interaction with microservices should preferably be
based on sequences of operations instead of isolated operations
to get more realistic results. As such, systems like YCSB+T [7] or
BenchFoundry [1] are probably a better fit.

Besides workload generation and invocation of REST endpoints,
our approach generates synthetic data for the workload. For data
generation, we rely on JSON schema and the faker.js library dis-
cussed above. Approaches such as [26] are more powerful options
for data generation and also support parallel generation. Such par-
allelization could improve our prototype in which generating the
workload trace prior to distributing it onto the Worker Nodes can be
rather slow. Nevertheless, we do not see parallelization as a critical
feature since the generated workload can be persisted and reused
instead of being generated from scratch for every benchmark run.

Lohttps://artillery.io/
https://www.soapui.org/professional/loadui-pro.html

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Aside from benchmarking, alternatives such as canary releases
and blue green testing coupled with monitoring [28] can be used
if the option exists to expose the new microservice (version) to a
share of the production traffic.

Finally, an alternative to both benchmarking and live testing —
at least for clients of a microservice — can be to rely on SLAs while
monitoring violations, e.g., [17, 21]. This approach, however, only
shifts the responsibility for ensuring microservice performance
to another organizational entity and does not actually solve the
challenge of detecting performance changes of microservices early
on, ideally as part of an Continuous Integration pipeline [13, 31].

7 CONCLUSION

Benchmarking microservices serves to understand and check their
non-functional properties for relevant workloads and over time.
Performing benchmarks, however, can be costly: each microser-
vice requires the design and implementation of a benchmark from
scratch, possibly repeatedly as the service evolves. As microservice
APIs differ widely, benchmarking tools, which typically assume
common interfaces of the system under test, do not exist yet.

In this work, we proposed a pattern-based approach to reduce
the efforts for defining microservice benchmarks, while still being
able to measure qualities of complex interactions. Our approach
assumes that microservices expose a REST API, described in a
machine-understandable way, and allows developers to model in-
teraction patterns from abstract operations that can be mapped
to that APIL. Required parameter values are provided at runtime
and possible data-dependencies between operations are resolved.
We implemented our approach in a prototype, which we used to
demonstrate the low effort applicability of our pattern-based bench-
marking approach to three open-source microservices. With this,
we could show that pattern-based benchmarking of microservices
is indeed feasible which opens up opportunities for microservice
providers and tooling developers.

REFERENCES

[1] David Bermbach, Jérn Kuhlenkamp, Akon Dey, Arunmoezhi Ramachandran,
Alan Fekete, and Stefan Tai. 2017. BenchFoundry: A Benchmarking Framework
for Cloud Storage Services. In Proc. of the International Conference on Service
Oriented Computing (ICSOC 2017). Springer.

[2] David Bermbach, Jérn Kuhlenkamp, Akon Dey, Sherif Sakr, and Raghunath
Nambiar. 2014. Towards an Extensible Middleware for Database Benchmark-
ing. In Proc. of the TPC Technology Conference on Performance Evaluation and
Benchmarking (TPCTC 2014). Springer.

[3] David Bermbach and Erik Wittern. 2016. Benchmarking Web API Quality. In
Proc. of the International Conference on Web Engineering (ICWE 2016). Springer.

[4] David Bermbach, Erik Wittern, and Stefan Tai. 2017. Cloud Service Benchmarking:
Measuring Quality of Cloud Services from a Client Perspective. Springer.

[5] Amir Hossein Borhani, Philipp Leitner, Bu-Sung Lee, Xiaorong Li, and Terence
Hung. 2014. WPress: An Application-Driven Performance Benchmark for Cloud-
Based Virtual Machines. In Proc. of the International Enterprise Distributed Object
Computing Conference (EDOC 2014). IEEE.

[6] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proc. of the
Symposium on Cloud Computing (SOCC 2010). ACM.

[7] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Réhm. 2014. YCSB+ T:

Benchmarking web-scale transactional databases. In Proc. of the International

Conference on Data Engineering Workshops (ICDE 2014). IEEE.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-

Mauroux. 2013. OLTP-Bench: An extensible testbed for benchmarking relational

=

M. Grambow et al.

databases. Proceedings of the VLDB Endowment 7, 4 (2013).
[9] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. 2013. Development and

deployment at facebook. IEEE Internet Computing 17, 4 (2013).
Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl,

and Cafer Tosun. 2013. Benchmarking in the cloud: What it should, can, and

cannot be. In Proc. of the TPC Technology Conference on Performance Evaluation

and Benchmarking (TPCTC 2012). Springer.

Martin Fowler. 2010. Richardson Maturity Model. Retrieved February 18, 2019

from https://martinfowler.com/articles/richardsonMaturityModel.html

Martin Grambow, Jonathan Hasenburg, Tobias Pfandzelter, and David Bermbach.

2019. Is it Safe to Dockerize my Database Benchmark?. In Proc. of the ACM

Symposium on Applied Computing, Posters Track (SAC 2019). ACM.

Martin Grambow, Fabian Lehmann, and David Bermbach. 2019. Continuous

Benchmarking: Using System Benchmarking in Build Pipelines. In Proc. of the

Workshop on Service Quality and Quantitative Evaluation in new Emerging Tech-

nologies (SQUEET 2019). IEEE.

Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Pearson Education.

Karl Huppler. 2009. The Art of Building a Good Benchmark. In Proc. of the TPC

Technology Conference on Performance Evaluation and Benchmarking (TPCTC

2009). Springer.

Ana Ivanchikj, Ilija Gjorgjiev, and Cesare Pautasso. 2018. RESTalk Miner: Mining

RESTful Conversations, Pattern Discovery and Matching. In Proc. of International

Conference on Service-Oriented Computing - Workshops (ICSOC 2018). Springer.

Alexander Keller and Heiko Ludwig. 2003. The WSLA framework: Specifying

and monitoring service level agreements for web services. Journal of Network

and Systems Management 11 (2003).

[18] Markus Klems, David Bermbach, and Rene Weinert. 2012. A Runtime Qual-

ity Measurement Framework for Cloud Database Service Systems. In Proc. of

the International Conference on the Quality of Information and Communications

Technology (QUATIC 2012). IEEE.

Markus Klems, Michael Menzel, and Robin Fischer. 2010. Consistency Bench-

marking: Evaluating the Consistency Behavior of Middleware Services in the

Cloud. In Service-Oriented Computing, Paul Maglio, Mathias Weske, Jian Yang,

and Marcelo Fantinato (Eds.). Lecture Notes in Computer Science, Vol. 6470.

Springer.

[20] James Lewis and Martin Fowler. 2014. Microservices. Retrieved February 15,

2019 from https://martinfowler.com/articles/microservices.html

Heiko Ludwig, Alexander Keller, Asit Dan, Richard P King, and Richard Franck.

2003. Web service level agreement (WSLA) language specification. Ibm corpora-

tion (2003).

Malcolm D Mcllroy, EN Pinson, and BA Tague. 1978. UNIX Time-Sharing System:

Foreword. Bell System Technical Journal 57, 6 (1978).

Steffen Miiller, David Bermbach, Stefan Tai, and Frank Pallas. 2014. Benchmarking

the Performance Impact of Transport Layer Security in Cloud Database Systems.

In Proc. of the International Conference on Cloud Engineering (IC2E 2014). IEEE.

Toannis Papapanagiotou and Vinay Chella. 2018. NDBench: Benchmarking

Microservices at Scale. arXiv e-prints (2018).

Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio Lopez,

Garth Gibson, Adam Fuchs, and Billie Rinaldi. 2011. YCSB++: Benchmarking and

Performance Debugging Advanced Features in Scalable Table Stores. In Proc. of

the Symposium on Cloud Computing (SOCC 2011). ACM.

Tilmann Rabl, Michael Frank, Hatem Mousselly Sergieh, and Harald Kosch. 2010.

A data generator for cloud-scale benchmarking. In Proc. of the TPC Technology

Conference on Performance Evaluation and Benchmarking (TPCTC 2010). Springer.

Alex Rodriguez. 2008. Restful web services: The basics. IBM developerWorks 33

(2008).

Gerald Schermann, Dominik Schoni, Philipp Leitner, and Harald C Gall. 2016.

Bifrost: supporting continuous deployment with automated enactment of multi-

phase live testing strategies. In Proc. of the International Middleware Conference

(Middleware 2016). ACM.

[29] Joel Scheuner, Philipp Leitner, Jirgen Cito, and Harald Gall. 2014. Cloud Work-
Bench - Infrastructure-as-Code Based Cloud Benchmarking. In Proc. of the In-
ternational Conference on Cloud Computing Technology and Science (CloudCom
2014). IEEE.

[30] Jéakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L.
Henning, and Paul Cao. 2015. How to Build a Benchmark. In Proc. of the ACM/SPEC
International Conference on Performance Engineering (ICPE 2015). ACM.

[31] Jan Waller, Nils C Ehmke, and Wilhelm Hasselbring. 2015. Including performance
benchmarks into continuous integration to enable DevOps. ACM SIGSOFT
Software Engineering Notes 40, 2 (2015).

[32] Qing Zheng, Haopeng Chen, Yaguang Wang, Jiangang Duan, and Zhiteng Huang.
2012. Cosbench: A benchmark tool for cloud object storage services. In Proc. of
the International Conference on Cloud Computing (CLOUD 2012). IEEE.

[10

[11

[12

=
&

[14

[15

[16

=
=

[19

[21

[22

[23

[24

[25

I
&

[27

[28

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/microservices.html

	Abstract
	1 Introduction
	2 Background
	2.1 Microservices
	2.2 REST APIs
	2.3 Interface description
	2.4 Benchmarking

	3 Pattern-based Benchmarking
	3.1 Challenges
	3.2 From Abstract Pattern Definition to Service-Specific Workloads
	3.3 System Design

	4 Evaluation
	4.1 Proof-of-concept Implementation
	4.2 Services
	4.3 Experiment
	4.4 Summary

	5 Discussion
	6 Related Work
	7 Conclusion
	References

