ShutPub: Publisher-side Filtering for Content-based
Pub/Sub on the Edge

Minghe Wang
TU Berlin & ECDF
Berlin, Germany
mw@mcc.tu-berlin.de

Tobias Pfandzelter
TU Berlin & ECDF
Berlin, Germany
tp@mcc.tu-berlin.de

Abstract

The pub/sub paradigm facilitates communication among het-
erogeneous edge and IoT devices for distributed edge appli-
cations. At the same time, the increasing number of devices
and sensors at the edge leads to higher network conges-
tion, which requires more processing power for both pub/
sub brokers and devices. While message filtering based on
subscriber-specified rules can alleviate this, implementing
filtering logic on the brokers still requires publishing com-
ponents to send all messages over constrained links.

In this paper, we instead propose filtering pub/sub mes-
sages directly on the publisher, in order to reduce network
congestion. We present ShutPub, a publisher-side middle-
ware that performs message filtering before forwarding them
to the broker. ShutPub limits the publisher message dissem-
ination based on subscriptions and their filters while still
being transparent to the publisher. In this way, the content-
based filter capabilities are moved from the broker to the
publisher so that only messages that have a receiver are
transmitted. Our prototype evaluation shows that ShutPub
can reduce system strain on the network and broker without
simply shifting the burden to the publisher, which benefits
from sending fewer messages.

Keywords
Publish/Subscribe, Edge Computing, Publisher-Side Filtering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

EdgeSys °24, Athens, Greece

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0539-7/24/04
https://doi.org/10.1145/3642968.3654815

Trever Schirmer
TU Berlin & ECDF

Berlin, Germany
ts@mcc.tu-berlin.de

David Bermbach
TU Berlin & ECDF
Berlin, Germany

db@mcc.tu-berlin.de

ACM Reference Format:

Minghe Wang, Trever Schirmer, Tobias Pfandzelter, and David
Bermbach. 2024. ShutPub: Publisher-side Filtering for Content-
based Pub/Sub on the Edge. In 7th International Workshop on Edge
Systems, Analytics and Networking (EdgeSys '24), April 22, 2024,
Athens, Greece. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3642968.3654815

1 Introduction

By bringing computational power closer to the end user, edge
computing enables real-time communication and privacy for
users while also alleviating network strain. Often, applica-
tions running in such edge environments follow the publish/
subscribe (pub/sub) paradigm as it can support decentral-
ized, scalable, and asynchronous communication [7-10, 19].
Today, state-of-the-art pub/sub in research and practice usu-
ally relies on content-based filtering (often on topic-based
pub/sub), where messages are distributed based on their con-
tent, as it allows clients to precisely express their interests
and to only deliver those messages needed, thus, minimizing
unnecessary resource utilization [12, 16-18, 20, 22].

Even in this case, however, subscribers may be only inter-
ested in a fraction of the messages published, with the pub/
sub broker immediately discarding many messages upon re-
ceipt, e.g., in case of messages published to a topic that does
not have subscribers. As a result, the publisher unnecessarily
creates and sends messages to at least one broker, which in
turn run(s) content-based filtering, thus, wasting resources.
If instead parts of the content-based filtering were shifted to
the publisher, we could avoid this inefficiency by discarding
messages already there or possibly even not generating the
messages in the first place.

In this paper, we propose ShutPub, a publisher-side mid-
dleware for shifting content-based filtering from broker to
publisher without modifying publisher logic. Using ShutPub,
publishers only send messages that are of interest to sub-
scribers, limiting message distribution directly at the source

https://doi.org/10.1145/3642968.3654815
https://doi.org/10.1145/3642968.3654815
https://doi.org/10.1145/3642968.3654815

EdgeSys ’24, April 22, 2024, Athens, Greece

and thus saving network bandwidth. The messages in Shut-
Pub are still processed in real-time, on the shortest path from
sender to recipient, but (i) content is filtered directly on the
publisher, (ii) publishers only send messages to the broker
when there is a subscriber that is interested in the current
message content, and (iii) any broker can benefit from this,
as message filtering is performed on the publisher.

Essentially, publishers receive filters from the broker based
on existing content-based subscriptions. Then, the publishers
filter out unnecessary messages accordingly. We make the
following contributions:

e We describe the design of ShutPub, an edge publisher-
side middleware that benefits any content-based pub/
sub system (§3).

e We present a proof-of-concept ShutPub prototype (§4).

e We demonstrate ShutPub and compare its performance
to existing content-based pub/sub brokers (§5).

2 Related Work

In edge environment, pub/sub provides an asynchronous
and many-to-many way for communication among hetero-
geneous edge nodes [7-10, 19]. Content-based pub/sub, es-
pecially in the form of topic-based pub/sub, is typically used
as it supports delivering messages only to those who are
interested in them.

Current research uses different approaches to reduce net-
work strain in the content-based pub/sub system. Some ap-
proaches use covering algorithms to deliver a message only
to a specific subset of subscribers [2, 4, 12, 15, 22]. This leads
to fewer subscribers that have to receive a given message.
Other work uses content-based filtering on the broker us-
ing boolean expressions to enable more expressive subscrip-
tions [1, 5, 6, 13], which leads to fewer messages that have to
be sent to subscribers. Others improve inter-broker routing
to reduce the overall number of messages exchanged, e.g., [8-
10]. There is even work, integrating Function-as-a-Service
(FaaS) to enable elastic, on-demand complex data processing
on the broker [14, 21]. This allows offloading some message
processing effort from subscribers to the broker, which can
reduce both the number and size of messages.

However, all of these systems still require brokers to re-
ceive all messages from publishers and perform matching,
scoring, filtering, or complex processing on all received mes-
sages. This can reduce the load between brokers and sub-
scribers, but not between brokers and publishers. Performing
publisher-side filtering can fill the research gap and further
reduce resource consumption in edge environments, which
have constrained network and computational resources.

There is some early research on message filtering on the
publisher side: Cho et al. [3] proposed an approach that
modifies CORBA event services and their counterparts on

Minghe Wang, Trever Schirmer, Tobias Pfandzelter, and David Bermbach

publishers and subscribers to partially filter events on the
publisher side. A key limitation of this is that this requires
tight coupling between publishers, brokers, and subscribers
and is unlikely to scale beyond a low number of involved
nodes. ShutPub, in contrast, tries to keep as much as possible
unchanged: Subscribers are not affected, it integrates with
any kind of broker, and brokers retain their functionality for
unmodified publishers. In essence, ShutPub more resembles
a side-car proxy with message filtering than a fully integrated
publisher-to-subscriber message channel.

Hashemi et al. [11] propose to use publisher-side message
filtering as a small part of a larger data sharing architecture.
In contrast to our approach, their work focuses on security
and access control aspects, trying to maintain data privacy
through filtering on the publisher side, i.e., it filters data
that may not leave the publisher, similar to information flow
control. ShutPub, however, filters data that may leave the
publisher and focuses on not sending events for which no
subscriber exists to improve resource efficiency. Furthermore,
their approach appears to not have been implemented.

3 ShutPub Architecture

With ShutPub, we aim to offload parts of the content-based
filtering from the broker to the publishers, i.e., we separate
the question of whether there are subscribers for a given
message from the question of who those subscribers are.
The first question is pushed to the publisher side while the
second question is handled on the broker. In fact, it would
even be possible to have a simple filter with occasional false
positives on the publisher in case that the content-based
filtering should prove very compute-intensive.

Overall, we design ShutPub with two main objectives:
(i) enabling accurate event distribution while reducing net-
work strain between publisher and broker, and (ii) optimizing
content-based pub/sub systems by offloading filtering to the
publisher. In this section, we give an overview of the archi-
tecture and design of ShutPub; see also Figure 1.

ShutPub consists of two main components: the Publisher-
Side Middleware and the Filter Manager. The Publisher-Side
Middleware is located on the publisher and the Filter Man-
ager in the broker. Every ShutPub publisher consists of an
original publisher without any changes (e.g., a sensor that
publishes a reading in regular intervals (Step 1 in Figure 1)),
and a Publisher-Side Middleware instance that filters these
messages before actually sending them to the broker.

In detail, the Publisher-Side Middleware subscribes to its
own meta topic (Step 2 in Figure 1) to receive the filter it
should use for filtering messages (Step 6 in Figure 1). The
Filter Manager is responsible for generating, maintaining
and publishing these filters based on the incoming subscrip-
tions. If there is a new subscriber connection on a topic with

ShutPub: Publisher-side Filtering for Content-based Pub/Sub on the Edge

(Publisher \

Middleware

2. subscribe to
meta topic

-

~

Broker

Filter Subscriber ==

i filter value

6. filter value

Message Filter

1.publish events

[Ordinary Publisher]

7. publish
limited events

Connection Manager

3. send

EdgeSys ’24, April 22, 2024, Athens, Greece

subscriptions

-meta topics
-original topics

4. get incoming
connections

5. publish filter
to meta topic

Filter Manager

Filter Publisher

_____ 5. Subscriber
8. matching

events

Filter Generator

update filter

Component Communication

=== Component Messaging

\J

=/

Figure 1: The main component of ShutPub is a Publisher-Side Middleware intended to reduce network strain
between publisher and broker by filtering messages directly on the publishers. On the broker side, a Filter Manager
is responsible for generating filters based on subscriptions, which are then forwarded to the Publisher-Side

Middleware via a meta topic.

existing subscribers (Step 3 in Figure 1), the Filter Manager
will analyze all existing subscriptions and create a "superfil-
ter", i.e., a filter that is a superset of all existing filters (Step
4 in Figure 1). It then publishes this filter to the meta topic
(Step 5 in Figure 1). The Publisher-Side Middleware will only
publish a message if it matches this superfilter (Step 7 in Fig-
ure 1). In this way, ShutPub pre-processes messages on the
publisher side for the content-based pub/sub broker which
optimizes the overall system by transmitting and processing
fewer messages.

Overall, ShutPub uses pub/sub basic functionality to op-
timize current pub/sub system, and (i) reduces the network
strain between publishers and the broker, and (ii) optimizes
any content-based pub/sub broker by restricting publisher
message dissemination.

4 Implementation

To show the feasibility of the proposed system design, we
implemented a proof-of-concept prototype of ShutPub that
we have made available as open-source software.! The pro-
totype is based on Apache ActiveMQ Artemis? which is
an open-source, scalable, well-documented pub/sub system.
ShutPub extends ActiveMQ publishers and brokers. For the
broker, ShutPub extends it with a key-value filter map that
matches subscription filters to topics. The filter map stores
the superset of multiple filters on the same topic, which is
received from the broker. In this way, ShutPub avoids adding
complex computation to the publisher, and the ActiveMQ
content-based filtering functionality can ensure accurate

Thttps://github.com/Mhwwww/ShutPub
Zhttps://github.com/apache/activemq-artemis

message dissemination to the subscribers. Once a publisher
connects to the broker with a specific topic, it will receive
the corresponding filter over a meta topic. For the publisher,
ShutPub lets every publisher initialize a new Publisher-Side
Middleware instance that subscribes to the meta topic for
filter values, and performs message filtering based on that.
Essentially, ShutPub uses pub/sub functionality to add new
features to pub/sub system.

5 Evaluation

In this section, we evaluate ShutPub by running experiments.
We run all ShutPub experiments on Google Cloud in the
europe-west3 region and use three e2-standard-2 (2 vC-
PUs, 8GB RAM) machines, one each for the broker, pub-
lishers, and subscribers. For overheads, we measure CPU
utilization as the majority of extra efforts resulting from the
use of ShutPub are CPU-bound. As a baseline, we compare
ShutPub to ActiveMQ without any changes.

We start by quantifying network load effects (§5.1). After-
wards, we evaluate overheads on broker and publishers to
demonstrate the impact of ShutPub. For this, we first mea-
sure overheads on the publisher arising from an increased
message sending frequency (§5.2) before studying overheads
on the broker by respectively increasing throughput from the
publishers (§5.3) and filter update frequency from subscribers
(§5.4). Finally, we measure the overhead on the broker from
maintaining more filters (§5.5) and discuss our findings (§5.6).

5.1 Network Load Effects

ShutPub allows publishers to filter messages before sending
them to the broker thus reducing the publisher-side network

https://github.com/Mhwwww/ShutPub
https://github.com/apache/activemq-artemis

EdgeSys ’24, April 22, 2024, Athens, Greece

y 800 g ®=====: o — e 23
e \
&2 600 <
=~
% 400 \.
5+
2z, AN
£—200 ~ —e— ShutPub °.
= -4-- Baseline \
(]
0
0 20 40 60 80 100

Filtered Messages Percentage (%)

Figure 2: As the proportion of filterable messages in-
creases, the ShutPub network load decreases to near
zero. The baseline network throughput, however, stays
around 800 kBps per second as it always needs to send
all messages to the broker.

load. To evaluate how ShutPub impacts network bandwidth
between publishers and the broker, we let 1,000 publishers
connect to one broker and set ActiveMQ publishers to be the
baseline. We vary the percentage of messages that can be
filtered by publishers from 0 to 100 percent in twenty percent
increments. To measure the network load between publishers
and the broker, we collect the receiving and transmitting
network throughput of publishers. The result is shown in
Figure 2.

As the percentage of filtered messages increases, the net-
work throughput of ShutPub decreases from 773.75 to 26.35
kBps (kilobytes per second), while the baseline network
throughput stays at a stable level of 789.90 kBps on average.
As ShutPub needs to maintain meta-topics, it introduces
additional overhead when no messages need to be filtered
out. We measured a 5.11 kBps communication overhead with
1,000 publishers connected to ShutPub, which is compen-
sated by the reduction of publisher messages if only 0.56%
of messages are filtered.

5.2 Publisher Overheads

To evaluate how ShutPub impacts publisher performance, we
vary the publisher message sending frequency from 10,000
to 40,000 messages per second in steps of 10,000 with one
out of every ten messages matching the filter. We compare it
to a scenario using the vanilla ActiveMQ publisher and then
measure the CPU utilization of the publishers. The results
are shown in Figure 3.

As the publisher sends more messages, the CPU utilization
increases for both ShutPub and baseline. The average base-
line CPU utilization is 42.18 pp (percentage points) higher
than ShutPub, although ShutPub needs to maintain filters

Minghe Wang, Trever Schirmer, Tobias Pfandzelter, and David Bermbach

S 100
I L p— i
S 80 =
(] 2
N o
£ 60 P
- L 4
3 40 L .
o o/_._ ShutPub
£ 20
= -4-- Baseline
=]
a 0

10000 20000 30000 40000

Messages Sent per Second

Figure 3: As the publisher sends messages more fre-
quently, the CPU utilization increases for both base-
line and ShutPub.

and perform message filtering on the publisher. This is be-
cause filtering messages on the publisher consumes fewer
resources than sending messages to the broker, i.e., the ben-
efits exceed the measurable costs.

5.3 Broker Overheads: Message Frequency

The frequency with which publishers send messages affects
the broker load. As ShutPub filters messages on the publisher
side, increased frequency should reduce the load on the bro-
ker compared to the baseline. To evaluate this, we perform
experiments with 100 publishers and 4 subscribers connected
to the broker, and vary the total publisher message sending
frequency from 10,000 to 60,000 messages per second in steps
of 10,000. The four subscribers subscribe to subtopics of the
same topic. Each publisher publishes 20,000 messages to the
same topic with on average every tenth message matching a
subscription. We show the results in Figure 4a.

As the message frequency increases, the CPU utilization
increases for both ShutPub and baseline. ShutPub average
CPU utilization is 37.67 pp lower than the baseline, which is
a reasonable improvement.

5.4 Broker Overheads: Updating Filters

In this experiment, we study the effect of frequent filter
updates resulting from subscription changes. For this, we
use 10 subscribers with a unique topic for each and vary
their respective filter update frequency (10, 20, 50, 100, 150,
and 200 times per second) across experiment runs. We show
the resulting CPU utilization in Figure 4b.

As the filter frequency increases, the CPU utilization for
both ShutPub and baseline increases. ShutPub has a higher
CPU utilization since it needs to maintain the filters. Up-
dating filters 200 times per second yields an average CPU

ShutPub: Publisher-side Filtering for Content-based Pub/Sub on the Edge

EdgeSys ’24, April 22, 2024, Athens, Greece

—
N

<60 S 1 <
< R e s =90 " £ —e— ShutPub i
= O < 10 .
2 o) g } 5 -4 Baseline ®
E‘; 40 ¥ E Ps _,-—‘ E 8 ,./
= S 30 = = —
=)) - D 6 ./
=} o} o
5 a 20 o >
O 20 ——— " O J S 4 >
) /././ —o— ShutPub 3 10 ./’// —o— ShutPub 5 === S === *-
_§ ¥ -4— Baseline _{Q * -4-- Baseline —é 2
© 9 @ o @
10000 20000 30000 40000 50000 60000 50 100 150 200 1000 1500 2000 2500 3000

Messages Sent per Second

(a) Message Frequency

Filter Update Frequency (filters/second)

(b) Filter Update Frequency

Number of Filters

(c) Number of Filters

Figure 4: The load on the broker increases for both baseline and ShutPub in all three experiments. For message
processing, ShutPub significantly reduces the CPU load compared to the baseline (4a). Filter updates (Figure 4b)
from the subscribers and the total number of filters maintained result in a small CPU overhead compared to the

baseline (Figure 4c).

utilization overhead of 12.33 pp compared to the baseline
scenario. Considering that this is already a rather extreme
corner case, we consider this overhead acceptable for most
scenarios — especially in comparison to the benefits.

5.5 Broker Overheads: Creating Filters

As more subscribers connect, the broker needs to maintain
more filters, which increases the load on the broker. We per-
form experiments with 500, 1,000, 1,500, 2,000, 2,500 and
3,000 subscribers, where each subscriber has a unique fil-
ter. We then monitor the CPU utilization of the broker and
compare it to the baseline using ActiveMQ.

The results in Figure 4c show that as more subscribers con-
nect, both the baseline and ShutPub broker CPU utilization
increase. On average, ShutPub has an average 5.36 pp higher
load. However, even when 3,000 subscribers connect to the
ShutPub broker running on a rather small e2-standard-2
(2 vCPUs, 8GB RAM), the CPU utilization is 11.2% which is
still at a low level. For realistic edge computing scenarios, the
overhead of creating filters in ShutPub will not be relevant.

5.6 Discussion

To showecase the performance of ShutPub, we conducted
experiments in terms of network load, publisher and broker
overheads. Since changes in either publishers or subscribers
affect the broker overhead, we extensively investigate the
broker overhead by varying the number of filters, filter up-
date frequency, and message throughput from publishers.

Lower network load between publishers and broker. Shut-
Pub allows publishers to only distribute messages when there
is a need from subscribers with a negligible communication
overhead. This approach improves network efficiency, en-
sures stable message transmission in network-constrained
situations, and reduces cost in the edge environment.

Reduced resource consumption on publishers. The average
CPU utilization of ShutPub publishers decreases signifi-
cantly as the number of messages sent decreases, even though
they need to perform additional message filtering. When the
CPU utilization of the baseline publisher reaches 89.35%, the
CPU utilization of ShutPub is only 36.93%. Consequently,
ShutPub enables publishers to (i) support more intensive
message-sending scenarios, (ii) operate in a more energy-
critical environment, and (iii) save energy consumption, thus
having a longer lifetime if they are battery-powered.

Increased broker performance. ShutPub broker shows bet-
ter performance on publisher message throughput. However,
as ShutPub broker needs to further maintain filters for pub-
lishers, there is additional broker overhead compared to the

vanilla ActiveMQ broker. On a resource-limited e2-standard-2

broker, the extreme corner case overhead is around ten per-
cent. For realistic scenarios, brokers have better capabilities
which means that the overhead from filters is negligible and
the throughput advantage remains. Consequently, ShutPub
allows the broker to have a higher performance by either
having more publisher connections or having less broker
resource utilization.

6 Conclusion

Content-based pub/sub systems allow subscribers to pre-
cisely express which messages they are interested in. In prac-
tice, publishers send all their messages to a broker where
messages without subscribers are discarded. This wastes a lot
of resources which can be crucial, especially when moving
towards the edge.

In this paper, we proposed ShutPub, a publisher-side mid-
dleware that automatically shifts message filtering logic from
the broker to the publishers in order to drop unnecessary

EdgeSys ’24, April 22, 2024, Athens, Greece

messages already at their source. We implement a proof-of-
concept prototype based on ActiveMQ and show through
experiments that ShutPub can lead to significant resource
savings depending on the distribution of interests. The re-
sults show that ShutPub generally improves the performance
of network bandwidth on the publisher side, as well as re-
ducing CPU utilization for both publishers and the broker.

Acknowledgments

Funded by the Bundesministerium fiir Digitales und Verkehr
(BMDYV, German Federal Ministry for Digital and Transport)
- 19F1119A.

References
[1] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. 2001.

[8

[9

—

=

]

]

Design and evaluation of a wide-area event notification service. ACM
Trans. Comput. Syst. 19, 3 (Aug. 2001), 332-383. doi:10.1145/380749.
380767

Lisi Chen, Shuo Shang, Zhiwei Zhang, Xin Cao, Christian S. Jensen,
and Panos Kalnis. 2018. Location-Aware Top-k Term Publish/Subscribe.
In Proceedings of the 2018 IEEE 34th International Conference on Data
Engineering (Paris, France) (ICDE ’18). IEEE, New York, NY, USA, 749-
760. doi:10.1109/ICDE.2018.00073

Kyu Bong Cho, Sung Keun Song, and Hee Yong Youn. 2007. Publisher-
side Event Filtering for QoS-Awareness in Ubiquitous Computing.
In Proceedings of the 2007 International Conference on Computational
Science and its Applications (Kuala Lumpur, Malaysia) (ICCSA °07).
IEEE, New York, NY, USA, 361-366. d0i:10.1109/ICCSA.2007.51

Ivan Cili¢ and Ivana Podnar Zarko. 2022. Adaptive Data-Driven Rout-
ing for Edge-to-Cloud Continuum: A Content-Based Publish/Subscribe
Approach. In Global IoT Summit. Springer, 29-42.

Cédric du Mouza and Nicolas Travers. 2018. Relevant Filtering in
a Distributed Content-based Publish/Subscribe System. In NoSQL
Data Models: Trends and Challenges. Wiley Data and Cybersecurity,
203-244.

Eli Fidler, Hans-Arno Jacobsen, Guoli Li, and Serge Mankovski. 2005.
The PADRES Distributed Publish/Subscribe System. In Principles and
Applications of Distributed Event-Based Systems. IGI Global, 12-30.
Daniel Happ and Suzan Bayhan. 2020. On the impact of clustering
for IoT analytics and message broker placement across cloud and
edge. In Proceedings of the Third ACM International Workshop on Edge
Systems, Analytics and Networking (Heraklion, Greece) (EdgeSys °20).
Association for Computing Machinery, New York, NY, USA, 43-48.
doi:10.1145/3378679.3394538

Jonathan Hasenburg and David Bermbach. 2020. DisGB: Using Geo-
Context Information for Efficient Routing in Geo-Distributed Pub/Sub
Systems. In Proceedings of the 13th IEEE/ACM International Conference
on Utility and Cloud Computing (Leicester, United Kingdom) (UCC
2020). IEEE, New York, NY, USA, Dec. doi:10.1109/UCC48980.2020.
00026

Jonathan Hasenburg and David Bermbach. 2020. GeoBroker: Leverag-
ing Geo-Context for IoT Data Distribution. Elsevier Computer Commu-
nications 151 (Feb. 2020), 473-484. do0i:10.1016/j.comcom.2020.01.015

[10] Jonathan Hasenburg, Florian Stanek, Florian Tschorsch, and David

Bermbach. 2020. Managing Latency and Excess Data Dissemination in
Fog-Based Publish/Subscribe Systems. In Proceedings of the Second IEEE
International Conference on Fog Computing (Sydney, NSW, Australia)

Minghe Wang, Trever Schirmer, Tobias Pfandzelter, and David Bermbach

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(ICFC 2020). IEEE, New York, NY, USA, 9-16. doi:10.1109/ICFC49376.
2020.00010

Sayed Hadi Hashemi, Faraz Faghri, Paul Rausch, and Roy H Campbell.
2016. World of empowered IoT users. In Proceedings of the 2016 IEEE
First International Conference on Internet-of-Things Design and Imple-
mentation (Berlin, Germany) (IoTDI ’16). IEEE, New York, NY, USA,
13-24. d0i:10.1109/10TDI1.2015.39

Yafei Li, Lei Gao, Haobo Sun, Huiling Li, and Qingshun Wu. 2022. PRID:
An Efficient Pub/Sub Ride Hitching System. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Manage-
ment (Atlanta, GA, USA) (CIKM ’22). Association for Computing Ma-
chinery, New York, NY, USA, 4921-4925. doi:10.1145/3511808.3557213
Yanhong Li, Wang Zhang, Rongbo Zhu, Guohui Li, Maode Ma, Li-
hchyun Shu, and Changyin Luo. 2019. Fog-Based Pub/Sub Index
With Boolean Expressions in the Internet of Industrial Vehicles. IEEE
Transactions on Industrial Informatics 15, 3 (Sept. 2019), 1629-1642.
doi:10.1109/T11.2018.2868720

Pezhman Nasirifard and Hans-Arno Jacobsen. 2022. A Serverless
Publish/Subscribe System. (Oct. 2022). arXiv:2210.07897

Shunya Nishio, Daichi Amagata, and Takahiro Hara. 2022. Lamps:
Location-Aware Moving Top-k Pub/Sub. IEEE Transactions on Knowl-
edge and Data Engineering 34, 1 (March 2022), 352-364. doi:10.1109/
TKDE.2020.2979176

Shiyou Qian, Jian Cao, Yanmin Zhu, and Minglu Li. 2014. Rein: A fast
event matching approach for content-based publish/subscribe systems.
In Proceedings of the IEEE Conference on Computer Communications
(Toronto, ON, Canada) (INFOCOM 2014). IEEE, New York, NY, USA,
2058-2066. doi:10.1109/INFOCOM.2014.6848147

Shiyou Qian, Jian Cao, Yanmin Zhu, Minglu Li, and Jie Wang. 2014.
H-tree: An efficient index structure for event matching in content-
based publish/subscribe systems. IEEE Transactions on Parallel and
Distributed Systems 26, 6 (May 2014), 1622-1632. doi:10.1109/TPDS.
2014.2323262

Shiyou Qian, Weichao Mao, Jian Cao, Frédéric Le Mouél, and Minglu
Li. 2019. Adjusting Matching Algorithm to Adapt to Workload
Fluctuations in Content-based Publish/Subscribe Systems. In Pro-
ceedings of the IEEE Conference on Computer Communications (Paris,
France) (INFOCOM 2019). IEEE, New York, NY, USA, 1936-1944.
doi:10.1109/INFOCOM.2019.8737647

Thomas Rausch, Stefan Nastic, and Schahram Dustdar. 2018. EMMA:
Distributed QoS-Aware MQTT Middleware for Edge Computing Ap-
plications. In Proceedings of the 2018 IEEE International Conference on
Cloud Engineering (Orlando, FL, USA) (ICZE). IEEE, New York, NY,
USA, 191-197. doi:10.1109/IC2E.2018.00043

Wanghua Shi and Shiyou Qian. 2022. HEM: A Hardware-Aware Event
Matching Algorithm for Content-Based Pub/Sub Systems. In Proceed-
ings of the International Conference on Database Systems for Advanced
Applications (DASFAA 2022). Springer, Cham, Switzerland, 277-292.
d0i:10.1007/978-3-031-00123-9_23

Minghe Wang, Trever Schirmer, Tobias Pfandzelter, and David
Bermbach. 2023. Lotus: Serverless In-Transit Data Processing for
Edge-based Pub/Sub. In Proceedings of the 6th International Workshop
on Edge Systems, Analytics and Networking (Rome, Italy) (EdgeSys 23).
ACM, New York, NY, USA. doi:10.1145/3578354.3592869

Kaiwen Zhang, Mohammad Sadoghi, Vinod Muthusamy, and Hans-
Arno Jacobsen. 2017. Efficient covering for top-k filtering in
content-based publish/subscribe systems. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference (Las Vegas, NV, USA) (Mid-
dleware ’17). Association for Computing Machinery, New York, NY,
USA, 174-184. doi:10.1145/3135974.3135976

https://doi.org/10.1145/380749.380767
https://doi.org/10.1145/380749.380767
https://doi.org/10.1109/ICDE.2018.00073
https://doi.org/10.1109/ICCSA.2007.51
https://doi.org/10.1145/3378679.3394538
https://doi.org/10.1109/UCC48980.2020.00026
https://doi.org/10.1109/UCC48980.2020.00026
https://doi.org/10.1016/j.comcom.2020.01.015
https://doi.org/10.1109/ICFC49376.2020.00010
https://doi.org/10.1109/ICFC49376.2020.00010
https://doi.org/10.1109/IoTDI.2015.39
https://doi.org/10.1145/3511808.3557213
https://doi.org/10.1109/TII.2018.2868720
https://arxiv.org/abs/2210.07897
https://doi.org/10.1109/TKDE.2020.2979176
https://doi.org/10.1109/TKDE.2020.2979176
https://doi.org/10.1109/INFOCOM.2014.6848147
https://doi.org/10.1109/TPDS.2014.2323262
https://doi.org/10.1109/TPDS.2014.2323262
https://doi.org/10.1109/INFOCOM.2019.8737647
https://doi.org/10.1109/IC2E.2018.00043
https://doi.org/10.1007/978-3-031-00123-9_23
https://doi.org/10.1145/3578354.3592869
https://doi.org/10.1145/3135974.3135976

	Abstract
	1 Introduction
	2 Related Work
	3 ShutPub Architecture
	4 Implementation
	5 Evaluation
	5.1 Network Load Effects
	5.2 Publisher Overheads
	5.3 Broker Overheads: Message Frequency
	5.4 Broker Overheads: Updating Filters
	5.5 Broker Overheads: Creating Filters
	5.6 Discussion

	6 Conclusion
	Acknowledgments
	References

