
(C) by IEEE, official version available via:
http://dx.doi.org/10.1109/BigData.2016.7840646

2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 548

Pick Your Choice in HBase: Security or Performance

Frank Pallas, Johannes Günther, David Bermbach
Information Systems Engineering Research Group

TU Berlin
Berlin, Germany

Email: {fp,jg,db}@ise.tu-berlin.de

Abstract—When analyzing sensitive data in a cloud-deployed
Hadoop stack, data-in-transit security needs to be enabled,
especially in the underlying storage tier. This, however, will
affect the performance of the system and may partially offset
the cost benefits of the cloud.

In this paper, we discuss two strategies for securing HBase
deployments in the cloud. For both, we present benchmarking
results which show performance impacts that significantly ex-
ceed the suggested 10% from the official documentation. These
results demonstrate (i) that security configurations should
follow a rational decision process based on benchmarking
results and (ii) that the security architecture of HBase/HDFS
should be redesigned with an emphasis on performance.

Keywords-Benchmarking; HBase; Performance; Security

I. INTRODUCTION

Big data technology can provide key business insights to
enterprises of all sizes. However, until a few years ago, this
was only available to big corporations that could afford the
necessary infrastructure for a data warehouse or big data
cluster in their local data center.

For smaller players, (public) cloud-based deployments
can serve as low risk door openers to the world of big
data. However, even big businesses can benefit from cloud-
based deployments: big data use cases which need compute
resources periodically (e.g., a bank running complex risk
analyses once a month) or for variably-sized data sets (e.g., a
retail company analyzing sales details right before Christmas
and a week later) are a natural fit for cloud deployments
that offer affordable, pay-as-you-go resources with instant
scalability and high availability wherever and whenever
needed.

At the same time, though, cloud-based deployments require
additional security precautions due to data privacy regulations
or simply for protecting core business interests. However,
the performance impact of securing the big data cluster may
offset the original cloud benefits – an aspect that has not been
focused on in big data research yet. For instance, the official
Apache HBase documentation only mentions an estimated
performance impact of approximately 10% arising from the
activation of built-in native security mechanisms [1, Section
58.3] which, as we will later see, is usually incorrect and
also considers HBase native security as the only option.
At the same time, cloud computing research, e.g., [2], has

found interesting effects when enabling transport security –
comprising a broad spectrum of both negative and positive
performance impacts depending on the specific configuration.

In this paper, we focus on HBase, – the NoSQL system
underlying the Hadoop ecosystem – and the performance
impact of enabling security features therein, specifically of
enabling transport encryption to ensure confidentiality of data
in transit. We explicitly consider the big data engines on top
of HBase, e.g., Hadoop or Spark, beyond the scope of this
paper. We, therefore, present the following contributions:

• A thorough discussion of different strategies for ensuring
data confidentiality for cloud-based HBase deployments

• A comprehensive experimental evaluation of the perfor-
mance impact incurred by following a specific strategy

• A discussion of lessons learned and recommendations
for big data deployments in public clouds

This paper is structured as follows: Based on a realistic
application scenario and some foundations on cloud security
and the HBase architecture provided in section II, we present
two possible approaches for securing data in transit to, from,
and within an HBase cluster deployed in a public cloud in
section III. Our experiments for determining the performance
impact of these approaches and the respective results are
presented in section IV and discussed in section V. We close
with related work (section VI) and a conclusion (section VII).

II. FOUNDATIONS

In this section, we will give an overview of the application
scenario behind our work and resulting security requirements
in cloud environments, before presenting a brief introduction
to HBase and its relevant communication channels.

A. Application Scenario
For our considerations, we assume the scenario of a mid-

sized DIY store chain that already operates a comparably
small centralized data center that serves both the ERP system
as well as data analysis tasks. As storage backend, the
store uses HBase. Due to recent growth in business, the
ERP is affected by increased latency leading to delays
at checkout and thus to decreased customer satisfaction.
Furthermore, the insufficient capacity of the storage backend
also impairs business intelligence through significantly longer
data analysis runtimes.

549

���	 ���	 ���	

��
��

�
���� 	�
�� 	���� �����

	
���
	�����

���
	�����

���
���
�����

�

�
�

Figure 1. Considered application scenario

Instead of investing in additional hardware, the store chain
plans to partially migrate to the cloud. Besides other benefits,
this supports a cost-efficient mode of operation in which only
a few active instances keep running HBase continuously while
additional instances are provisioned for data analysis jobs
with Hadoop, Spark, Storm, or Flink whenever necessary.

Given its omnipresence in the big data context and the
number of compatible connectors, components and tools
available, the store chain plans to stick with the Hadoop
ecosystem and thus to store all data in a cloud-deployed
HBase cluster running on top of HDFS for both transaction
processing as well as big data analytics. Figure 1 illustrates
this scenario.

B. Cloud Security and the Need for Data in Transit Security
While a cloud-based approach promises obvious economic

benefits in this scenario, it also raises additional concerns
in matters of security. For example, customer data must be
appropriately protected due to privacy/data protection laws,
sales data represents valuable business secrets that must not
be revealed to other players, and data integrity must be
ensured to prevent misleading analyses. Cloud computing
here necessitates a variety of specific security precautions.
Depending on the particular use case and risk model, this
can include measures for secure data storage (“data at rest
security”), mechanisms explicitly addressing multi-tenancy
issues, or even novel approaches to audit and compliance
management [3].

In the context of cloud security, concepts based on fully
homomorphic encryption [4] promise to facilitate the use
of cloud computing even when the cloud provider is not
trusted [5]. However, this comes with such a performance
penalty that it typically offsets the entire economic cloud
benefits [6]. We will, therefore, in the following assume the
cloud provider to be sufficiently trusted.

A core challenge in our scenario but also for cloud
deployments in general is to ensure “data in transit security”.
Even with a trustworthy cloud provider, data in transit to and
from the cloud as well as between different components of a
system (e.g., different nodes of a cluster) must be protected
against threats like eavesdropping or data manipulation as
they make use of public networks.

����
�����	���

�����

������������

��

����
�����	���

�����

����� ������

��

����
�����	���

�����

������������

��

�����
�������������

��

����
	����	���

����������

��������

�
��
���
��
��
�

Figure 2. HBase deployment using HBase native security

C. HBase Architecture and Communication Channels

A typical HBase installation has a single master server
that manages an arbitrary number of region servers which
process client requests. Each region server controls a number
of data nodes which store the actual data. To simplify
maintenance, the HBase master commonly runs on top of
Apache Zookeeper, a high level coordination service [7, p. 33].
Clients first request the corresponding region server’s address
from Zookeeper before directly interacting with the respective
region server for reads and updates.

Master server, region servers and data nodes communicate
with each other on two logical layers: the HBase-specific layer
and the underlying HDFS-layer. Of these, the HBase-layer
communicates via the HBase RPC protocol while the HDFS
layer uses Hadoop RPC and the HDFS data transfer protocol.
External clients communicate with the master server and the
region servers either via native HBase RPC or through REST
APIs, whereas the prevalent approach is to use tools that
communicate via HBase RPC for reasons of efficiency. We
will therefore explicitly not consider REST APIs herein.

The communication channels to be protected for cloud-
based HBase deployments like the one assumed in our
scenario are thus the cluster-internal traffic on the HDFS layer
(Hadoop RPC and HDFS data transfer) and cluster-internal
as well as -external communication via HBase RPC.

III. SECURING HBASE COMMUNICATION IN THE CLOUD

There are two main approaches for securing communi-
cation with and within cloud-based HBase clusters: HBase
native security and an HBase-independent architecture based
on virtual private clouds (VPC) and VPN. Both will now be
introduced briefly.

A. HBase Native Security

The most important security mechanism in HBase is the
so-called “wire encryption” between different nodes as well
as between HBase nodes and external clients. HBase’s wire
encryption rests upon the well-established Kerberos protocol

550

����������� ����
�����

���
�����	���

�����
��������� ��

��

���
�����	���

�����
������ �� ��

��

���
�����	���

�����
��������� ��

��

�����
��������� ��

��

���
	����	���

���������

��

�����	

�
��

���
��
��
�

Figure 3. HBase deployment using a VPN-protected virtual private cloud

and architecture [8] for key distribution, authentication and
ticket-issuing and thus necessitates to extent deployments by
a dedicated Kerberos service.

A client that wants to access an HBase node in this
setting obtains a ticket from the Kerberos service which
delivers a session key to authenticated clients. Between nodes,
in turn, shared secrets are established which are used for
encrypting cluster-internal and traffic. In this regard, HBase-
specific communication on the one and communication on the
HDFS-layer (Hadoop RPC and HDFS data transfer) on the
other hand are treated independently. Encryption can thus be
activated and configured separately for the different layers [9,
209-210]. Activating encryption for external communication
on the HBase layer automatically also enables cluster-internal
encryption in this layer. As stated above, the secure operation
of HBase in the cloud requires both layers to be protected
and thus both mechanisms to be activated. Figure 2 illustrates
this approach.

According to the official documentation, HBase wire
encryption is supposed to have a performance impact of
approx. 10% [1, Section 58.3]. However, this impact has so
far not been backed by experiments and must be considered
a rough estimate. In any case, such a performance impact has
(in addition to the necessity for a separate Kerberos service)
to be factored into decisions on the aspired system setup.

B. VPN-protected Virtual Private Cloud
Another approach to securing HBase deployments in the

cloud is to operate the entire cluster within a VPC that is
logically isolated from the rest of the cloud provider’s in-
frastructure and only accessible through a dedicated network
connection. Any traffic between the cluster and external
clients uses this dedicated connection and can easily be
secured against eavesdropping and manipulation through
standard VPN solutions. Due to the strong isolation provided
within VPCs, cluster-internal traffic between different nodes
can be considered sufficiently secure without additional
measures and, in particular, without using HBase native
security (see figure 3).

Table I
APPROXIMATE CPU LOAD OBSERVED IN OUR EXPERIMENTS

Experiment Class Data Nodes Master YCSB VPN
No Security 80% <5% 40-50% –
HBase Native 85% <5% 50-65% –
VPC + VPN 20-25% <5% 50% 30%

This deployment model promises several advantages over
the native security approach discussed above: First, it reduces
complexity as well as deployment and maintenance efforts,
particularly regarding the operation and management of
Kerberos and its counterparts on the other nodes of the
cluster. Second, traffic encryption is then realized through
specialized, mature solutions like OpenVPN, which have been
extensively tested and optimized over the years. Regarding
reliability and performance, this is an expectable advantage
over HBase native security, which was only retrofitted after
the main architecture had already been implemented.

On the other hand, a VPN-protected VPC requires addi-
tional resources for a dedicated VPN server and adds two
additional intermediaries – VPN client and server – to the
communication between clients and the cluster. Comparable
to HBase native security, it is unclear how these will affect
the overall performance of HBase. However, since both
approaches can be considered sufficiently secure, factors like
the performance impact imposed by the presented approaches
should be one of these core decision factors for selecting
an approach: While it is broadly accepted that security
always comes at a cost, an approach that excessively impairs
performance (or, respectively, requires significantly more
provisioned resources for achieving the same performance)
will be a worse option than another approach providing
the same security level at a significantly smaller footprint.
Making a rational decision between the two approaches laid
out above thus requires reliable evidence on their respective
performance impact. Furthermore, the same knowledge can
also be pivotal for the decision whether to deploy HBase in
the cloud at all: In case of an excessive security overhead,
doing so could suddenly become economically infeasible.

IV. EXPERIMENTS

In this section, we will describe the results of our experi-
ments with the overall goal of quantifying the performance
impact of enabling one of the above presented approaches for
securing HBase. We will start by describing the experiment
design, followed by the experiment setup before presenting
experiment results. In addition, we also present the results of
several supplementary experiments we conducted to better
understand the impact of select influence factors.

A. Experiment Design

With our experiments we aimed to answer three basic
questions:

551

• Q1: What is the performance impact in terms of
maximum throughput of enabling native security in
HBase?

• Q2: What is the performance impact in terms of
maximum throughput of using a VPN-protected VPC
deployment?

• Q3: Is this potential impact constant for different cluster
sizes, i.e., is there a scalability impact through the
different security options?

To answer these questions, we decided to measure max-
imum throughput of HBase in three configurations (no
security as a baseline value, HBase native security, VPC)
for three different cluster sizes. Each conducted experiment
was repeated until we were sure to have found reproducible
results. With extensive monitoring, we asserted that none of
the “special” nodes, i.e., HBase master, HDFS name node,
Kerberos, VPN server, Zookeeper, and (most importantly)
the benchmark client, became a resource bottleneck during
our experiments.

For benchmarking, we used YCSB [10], the current state
of the art database benchmarking tool. As a workload we
selected workload A which offers a 50:50 ratio of reads to
writes and is thus fairly representative for our presented use
case from figure 1, but which is also comparable to existing
database benchmarking papers, e.g., [2], [11]–[13]. For larger
cluster sizes, we increased the number of operations in each
benchmark to assert that each experiment ran sufficiently
long. We used OpenVPN for the VPC configuration.

B. Experiment Setup
For our experiments, we used Amazon EC2 and deployed

all systems in the same availability zone of the region us-east-
1. For the VPC experiments we used Amazon VPC. For the
placement of components on virtual machines, we followed
best practices from literature (e.g., [7], [11], [14], [15]) and
deployed the components as described in figures 2 and 3;
YCSB took the role of the “application” in those figures.

We used t2.small instances for Kerberos, m3.small for the
VPN server, c4.xlarge (experiments with 3 and 6 data nodes)
and c4.2xlarge (experiments with 12 data nodes) for YCSB,
and m4.large for all other machines (data node/regionserver
and master/Zookeeper/name node). Depending on the respec-
tive experiment we had either 3, 6, or 12 machines running the
combination of data node and regionserver. Again, we used
extensive monitoring to avoid having performance bottlenecks
in any non-regionserver machines. Except for the VPC case,
which we will discuss in some more detail later, the observed
CPU loads approximately depicted in table I are as intended.

C. Experiment Results
Following the basic questions laid out above, we first

wanted to know the performance impact raised in terms of
maximum throughput by activating HBase native security.
For this aim, we started with our medium cluster size (6 data

�

����

�����

�����

�����

�����

� �� ��� ��� ��� ��� ��� ���

����������
	�����
��������������

��
��
��
��
��
��
��
��
�

�������

Figure 4. Exemplary throughput impact of HBase native security for a
cluster with 6 data nodes

�
����
����
����
����
����
	���

���
����
����
�����

� ��� ��� 	�� ��� ����

������ ���"

���������!����� ���"

��
��
 �
��
 �
���
��
��
�

��������

Figure 5. Exemplary throughput impact of HBase native security for a
cluster with 3 data nodes

nodes) and measured an overall average throughput of 18,215
ops/s for the baseline setting without security. With HBase
native security enabled we observed an average throughput
of 9,643 ops/s – a decrease of 47% that goes way beyond
the 10% mentioned in the official HBase documentation [1,
Section 58.3]. Figure 4 illustrates this result.

Given this significant impact of HBase native security,
the second approach of a VPN-protected VPC becomes
increasingly interesting. For this configuration, however,
we got even worse results with an average throughput of
5,243 Ops/s for the same cluster size with 6 data nodes. In
comparison with the baseline configuration, this corresponds
to a performance impact of more than 70%. As such impacts
will simply be inacceptable in practice, we abstained from
benchmarking this configuration for other cluster sizes at all.

For HBase native security, however, we still wanted to
know whether the performance impact is constant or varies
for different cluster sizes. Especially in the light of the
officially communicated 10%, we thus conducted respective
experiments for 3 and 12 data nodes as initially planned.

For the cluster with 3 data nodes, we got an overall average
throughput of 6,688 ops/s in the baseline configuration, which
dropped to 6,205 ops/s (a decrease of only 7%) with HBase
native security enabled (see figure 5). At least for this cluster

552

��

���

�����

���

��	�

��
�

�	�

�

�����

�����

�����

	����

����&���"��%���������� ����&���"��% �����&���"��%���������

�"����'$!&)
���%����&!(�����'$!&)
����#$"&��&������

�(
��
��
 $
"'
�
#'
&��
"#
%�
%�

Figure 6. Compared average throughput results for no security, HBase
native security, and VPN-protected VPC

size, our results are thus roughly in line with the official
HBase documentation. Notably, our cluster with 3 data nodes
and HBase native security enabled still performed better in
matters of maximum throughput than our VPN-protected
VPC configuration with 6 data nodes. Finally, the cluster
with 12 data nodes showed a drop in average throughput from
31,039 to 19,575 ops/s or 37% with HBase native security.

Altogether, we thus found the impact of HBase native
security in matters of maximum throughput to strongly
depend on the chosen cluster size. With larger, more realistic
cluster sizes, impact becomes significantly higher than the
10 % from the official documentation. Interestingly, however,
the jump from 7% (3 data nodes) to 47% (6 data nodes) does
not perpetuate but rather softens down to 37% for the cluster
with 12 data nodes. The configuration with a VPN-protected
VPC, in turn, showed a throughput decrease of more than
70% for 6 data nodes and was thus not pursued further for
other cluster sizes. Figure 6 summarizes these results.

D. Additional Experiments

In order to learn more about the effect of further factors
like instance types and to better localize the source of
the observed performance impacts, we conducted a set of
additional experiments within a more flexible and interactive
– yet more inaccuracy-prone – setting. This setting consisted
of 3 instances each of which again held a region server and a
data node. Different from our above-mentioned experiments,
however, the “master” components (name node, Zookeeper,
HBase master) were also placed on one of these instances in
addition to the region server and the data node. To heighten
flexibility and to ease the collection of metrics, we configured,
deployed, and monitored our nodes through Apache Ambari
in this setting. The Ambari server was also placed on the
“master” instance while the Ambari metrics collector was
installed on one of the two instances that ran the region server
and the data node. As in our above experiments, however,
YCSB and Kerberos were deployed on separate instances.

Due to the higher flexibility provided within this setting,
we were able to easily benchmark multiple variants of this
configuration. In particular, we conducted experiments on

m3.medium and r3.large instances. To identify whether the
observed performance impact arises on the HDFS- or on
the HBase-layer (see section II-C above), we furthermore
tested the additional security configuration with HDFS-layer
security turned on but HBase RPC encryption left inactive.
As in our main experiments, we repeated each experiment
several times to avoid random effects and monitored the
YCSB and Kerberos instances to avoid bottlenecks here.

Again, we experienced a significant performance impact
for the configuration with both security layers turned on for
both instance types. In contrast to our main experiments
outlined above, however, this performance impact already
arose for clusters with 3 data nodes: Throughput dropped
from 2,071 to 1,293 ops/s (38%) on m3.medium instances and
from 12,958 ops/s to 7,243 ops/s (44%) on r3.large instances.
While this basically confirms our finding that HBase native
security entails a substantial performance impact, it raises the
question why this impact can already be observed for clusters
with three data nodes here. Possible explanations include the
different component distribution as well as varios characteris-
tics of the used instance types (processor generation, storage
subsystem, etc.). Identifying the ultimate bottlenecks could
be done through more sophisticated monitoring tools such
as AISLE [16] in future experiments.

The experiments with the additional security configuration
of only HDFS-layer encryption turned on, in turn, provided
extremely illuminative insights: On m3.medium instances,
this configuration resulted in a performance impact of only
11% (1,842 instead of 2,071 ops/s). The remaining 27%
must thus be attributed to HBase’s RPC encryption. On
r3.large instances, this imbalance is even more prominent,
with only 8% (11,936 instead of 12,958 ops/s) of the overall
throughput reduction being caused by HDFS encryption and
the remaining 36% arising because of HBase RPC encryption.
Most of the observed performance impact is thus raised in the
security implementation of HBase RPC, which is therefore
an obvious candidate for closer examination in the future.

V. DISCUSSION AND IMPLICATIONS

Returning to the initial scenario from section II-A, choos-
ing one of the strategies for securing HBase will affect the
DIY store chain with extensive performance degradation. For
cases requiring a given target throughput, this requires to
provision more or bigger virtual machines (scale out or up).

This, however, can be rather costly: While we did not
test scale up strategies explicitly, we could see that the
maximum throughput of the 12 node cluster using HBase
native encryption was similar to the throughput of the
unsecured 6 node cluster. Using the prices of our setup
on EC2, this corresponds to a cost increase of 90%. This
sounds like a lot, however, the actual amounts are not that
high for cloud deployments: Considering only the cost for
the virtual machines, our unsecured 6 node cluster costs 0.84
USD/hour (i.e., 605 USD/month) while the secured 12 node

553

�
����
����
	���

���

�����
�����
�����
�	���
�
���
�����

� �� ��� ��� ��� ��� ��� ���

������# �"%
��!����"�$�����# �"%
����� �"��"������

�
��

�"
��

��
"�

��
%�

�&
!�

������!�

Figure 7. Update Latencies for 6 Data Node Clusters

cluster costs 1.59 USD/hour (i.e., 1145 USD/month). Both
values should still be compared to another baseline, that of an
on-premise deployment. This demonstrates that – at least for
small to mid-sized clusters – a cloud deployment is still the
more economical option for relatively short-running analysis
tasks; even in the face of horrendous performance penalties
when enabling then necessary data in transit encryption.

Another conclusion we draw from this is that it seems
about time (a) to consider security of the Hadoop stack a
key design goal – maybe more important than new analysis
features – and (b) to consider rewriting or replacing the
various RPC protocols of the Hadoop stack with a proven
standard technology solution. As a comparison, Apache
Cassandra uses a much simpler secure communication
architecture based on standard TLS implementations [2]. We
believe that the significant performance degradation observed
for HBase native security could be avoided by using a
standard and, thus, highly optimized TLS implementation
instead of custom RPC protocols.

Depending on the respective use case, the VPC option
should not entirely be disregarded: As illustrated in figure 7,
the throughput reduction of the VPC option was mainly
caused by dramatically increased latency values. This is due
to the fact that YCSB internally uses a fixed-size thread
pool for running the actual requests, i.e., these threads spent
a lot of time waiting for responses when benchmarking
the VPC option whereas they spent less time with idle
waiting in the other two setups. We did not increase the
thread pool size for YCSB to assert comparability across
benchmark runs. However, for applications that communicate
only asynchronously with the HBase cluster, the VPC option
could in fact be feasible.

VI. RELATED WORK

So far, there has not been a lot of work on quantifying
the performance impact of using security mechanisms in
HBase or other NoSQL systems: Müller et al. [2] developed
TLSBench to analyze the performance impact of enabling
transport layer encryption in Apache Cassandra and Ama-

zon’s DynamoDB service. Their findings indicate that poten-
tial performance impacts in DynamoDB are fully covered
by the provider whereas performance impacts in Cassandra
vary between low performance reductions, no effect at all,
and even increased performance. Their approach, however, is
not directly comparable to our approach since TLSBench is
specifically designed for TLS-based communication to which
the Hadoop stack uses a different, custom alternative.

The general security mechanisms available in Hadoop
(including HBase) have been presented in [9], [17], albeit
without an analysis of the resulting performance impact.
Other benchmarks run against HBase, e.g., [11], [13],
ignore security-related aspects. Configurations with client-
side encryption enabled where only encrypted data is stored
can only be used for a very limited number of use cases
and it is unclear whether this includes big data scenarios.
Existing benchmarking results of such setups, e.g., [18],
effectively quantify the performance of the benchmarking
client machine since client-side encryption is – aside of
small size differences of the data items – fully opaque for
underlying storage systems.

Other approaches for quantifying the performance impact
of using data in transit encryption focus on different protocols
and application domains such as web servers, e.g., [19], [20]
or web services, e.g., [21]. Existing benchmarking approaches
for NoSQL systems, in turn, do not consider security aspects,
instead focusing on performance, e.g., [10], [22], novel cloud-
specific benchmarks, e.g., [23], or consistency, e.g., [24],
[25]. Finally, approaches like [16], [26] can complement our
approach by providing insights into the quality of underlying
infrastructure resources in the cloud.

VII. CONCLUSION

Running HBase in the cloud comes with a number of
benefits. However, deploying HBase in the cloud requires
additional security measures . In particular, data in transit
within, to, and from an HBase cluster must be encrypted.
Such security measures, though, come at a price – either in
the form of reduced performance or as additional resources
required for achieving a certain target performance. These
costs are all too often unknown to system architects, pre-
venting them from making rational choices between different
design options and thus leading to undesirable outcomes.

Based on a realistic scenario comprising OLTP and OLAP
aspects, we presented two approaches for data in transit
security in cloud-deployed HBase clusters: one based on
HBase native security and one based on a VPN with VPC.
Through experiments we studied how these two approaches
affect performance of HBase in various cluster sizes.

In particular, we found that using HBase native security
leads to significant performance impacts of up to 47% for
realistic cluster sizes of 6 or 12 data nodes. In terms of costs,
this can result in an increase of up to 90% for achieving
similar performance with security enabled. Being aware of

554

these numbers allows practitioners to make better-founded
decisions whether to use HBase in the cloud or not.

When data in transit security is not mandatory, our results
support better tradeoff decisions between risk-reduction and
costs. Businesses considering cloud-based HBase deploy-
ments that significantly differ from ours could adopt our
experiment-driven approach to make more rational decisions
in the context of security based on own measurement results.

Finally, our results also provide guidance for future HBase
development: Through additional experiments, we were able
to attribute large portions of the observed performance
degradation to the HBase layer, i.e., not to the underlying
HDFS layer. The security implementations of HBase should
thus be examined in more detail and probably be rewritten
or replaced in the future. Given the ongoing trend towards
cloud-based big data analysis and the necessity for data in
transit security in most scenarios, reducing security overheads
should be a top priority in future HBase development.

Until then, users of cloud-based HBase deployments have
to pick their choice: Either they get a performant system –
or a secure one.

ACKNOWLEDGMENT

The authors would like to thank Amazon Web Services
who provided research grants for our experiments.

REFERENCES

[1] Apache Software Foundation. (2016) Apache hbase reference
guide. [Online]. Available: https://hbase.apache.org/book.
html#security.example.config

[2] S. Müller, D. Bermbach, S. Tai, and F. Pallas, “Benchmarking
the Performance Impact of Transport Layer Security in Cloud
Database Systems,” in Proc. of IC2E. IEEE, 2014, pp. 27–36.

[3] Cloud Security Alliance, “Security guidance for critical areas
of focus in cloud computing v3.0.”

[4] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009.

[5] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homo-
morphic encryption be practical?” in Proc. of CCSW 2011.
ACM, 2011, pp. 113–124.

[6] Y. Chen and R. Sion, Costs and Security in Clouds. New
York, NY: Springer, 2014, pp. 31–56.

[7] L. George, HBase: The Definitive Guide, 2nd ed. O’Reilly,
2015.

[8] C. Neumann, “The kerberos network authentication service
(v5),” RFC 4120, 2005. [Online]. Available: https://www.ietf.
org/rfc/rfc4120.txt

[9] B. Spivey and J. Echeverria, Hadoop Security - Protecting
Your Big Data Platform. Sebastopol: O’Reilly, 2015.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking Cloud Serving Systems with YCSB,”
in Proc. of SOCC. ACM, 2010, pp. 143–154.

[11] J. Kuhlenkamp, M. Klems, and O. Röss, “Benchmarking
Scalability and Elasticity of Distributed Database Systems,”
2014, pp. 1219–1230.

[12] D. Bermbach, L. Zhao, and S. Sakr, “Towards Comprehensive
Measurement of Consistency Guarantees for Cloud-Hosted
Data Storage Services,” in Proc. of TPCTC. Springer, 2014,
pp. 32–47.

[13] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero,
H.-A. Jacobsen, and S. Mankovskii, “Solving Big Data Chal-
lenges for Enterprise Application Performance Management,”
2012, pp. 1724–1735.

[14] G. Saloustros and K. Magoutis, “Rethinking hbase: Design
and implementation of an elastic key-value store over log-
structured local volumes,” in Proc. of ISPDC, 2015.

[15] N. Dimiduk and A. Khurana, HBase in Action, 1st ed.
Birmingham: Manning, 2012.

[16] J. Kuhlenkamp, K. Rudolph, and D. Bermbach, “AISLE:
Assessment of Provisioned Service Levels in Public IaaS-
based Database Systems,” in Proc. of ICSOC. Springer,
2015, pp. 154–168.

[17] P. P. Sharma and C. P. Navdeti, “Securing big data hadoop: a
review of security issues, threats and solution,” Int. J. Comput.
Sci. Inf. Technol, vol. 5, 2014.

[18] T. Waage and L. Wiese, “Benchmarking Encrypted Data
Storage in HBase and Cassandra with YCSB,” in Proc. of
FPS. Springer, 2015.

[19] G. Apostolopoulos, V. Peris, and D. Saha, “Transport layer
security: how much does it really cost?” in Proc. of INFOCOM
1999, 1999, pp. 717–725.

[20] L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan, “Anatomy
and performance of ssl processing,” in Proc. of ISPASS 2005,
march 2005, pp. 197–206.

[21] S. Shirasuna, A. Slominski, L. Fang, and D. Gannon, “Perfor-
mance comparison of security mechanisms for grid services,”
in Proc. of GRID 2004, 2004, pp. 360–364.

[22] M. Klems, D. Bermbach, and R. Weinert, “A Runtime Quality
Measurement Framework for Cloud Database Service Systems,”
in Proc. of QUATIC, 2012, pp. 38–46.

[23] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is
the Weather Tomorrow?: Towards a Benchmark for the Cloud,”
in Proc. of DBTEST. ACM, 2009, pp. 1–6.

[24] D. Bermbach and S. Tai, “Benchmarking Eventual Consistency:
Lessons Learned from Long-Term Experimental Studies,” in
Proc. of IC2E. IEEE, 2014, pp. 47–56.

[25] ——, “Eventual Consistency: How Soon is Eventual? An
Evaluation of Amazon S3’s Consistency Behavior,” in Proc.
of MW4SOC. ACM, 2011, pp. 1–6.

[26] A. H. Borhani, P. Leitner, B.-S. Lee, X. Li, and T. Hung,
“WPress: An Application-Driven Performance Benchmark for
Cloud-Based Virtual Machines,” in Proc. of EDOC. IEEE,
2014, pp. 101–109.

