
Towards Audio-Visual Cues for Cloud Infrastructure Monitoring

David Bermbach, Jacob Eberhardt
Information Systems Engineering Research Group

TU Berlin, Berlin, Germany
Email: {db,je}@ise.tu-berlin.de

Abstract—When monitoring their systems’ states, DevOps
engineers and operations teams alike, today, have to choose
whether they want to dedicate their full attention to a visual
dashboard showing monitoring results or whether they want
to rely on threshold- or algorithm-based alarms which always
come with false positive and false negative signals.

In this work, we propose an alternative approach which
translates a stream of cloud monitoring data into a continuous,
normalized stream of score changes. Based on the score level,
we propose to gradually change environment factors, e.g.,
music output or ambient lighting. We do this with the goal of
enabling developers to subconsciously become aware of changes
in monitoring data while dedicating their full attention to their
primary task.

I. INTRODUCTION

Modern cloud-based enterprises increasingly follow the
you build it, you run it paradigm where small teams of
software engineers no longer only develop an application
and then hand it over to other teams for testing and operation.
Instead, the development team is also responsible for running
the application, i.e., deploying and maintaining the system,
so that their responsibility shifts from simply providing a
piece of code to providing a system with strict SLAs. This
is typically referred to as DevOps [1].

While this has many advantages, it also confronts de-
velopers with tasks that traditionally never were theirs
to do. A good example for this is monitoring: While a
traditional enterprise may have a dedicated operations team
for closely observing and managing application state, this
suddenly becomes a side task for application developers –
a burden they are ill equipped to handle. Automation can
compensate for some parts of this: threshold- or machine
learning-based approaches can take automatic action to
resolve issues or notify developers through alarms. Still,
automatic action cannot fully replace human oversight and
alarms are inherently limited by their binary state – alarm
on or off – leading to a trade-off between false positive and
false negative alarm states.

In this paper, we propose MultiSense, an approach that
leverages the ability of the human subconscious to detect
deviations from a “normal” state. For this purpose, we use
monitoring results to control various aspects of the developers’
environment, thus, enabling them to subconsciously become
aware of faulty system states, e.g., through color changes
in the ambient lighting. In contrast to the traditional pager

approach, these environment factors can typically be changed
gradually so that, for lack of a binary decision, false positives
or false negatives become a thing of the past. Furthermore,
the likelihood of a signal moving from the subconscious to
a state of awareness highly depends on the intensity and
regularity of the signal as well as the person’s current level
of concentration [2], i.e., developers will in periods of full
concentration only become aware of critical system states
whereas they will in periods of low concentration also become
aware of smaller issues. For the evaluation of MultiSense, we
are actively working on our prototype AudioCues, a system
that is able to translate monitoring data into gradual changes
in ambient background music.

This paper is structured as follows: In section II, we will
discuss basic literature and related work on leveraging the
subconscious for presenting information to users. Then, in
section III, we will give a brief overview of MultiSense
before concluding in section IV.

II. BACKGROUND AND RELATED WORK

There are two cloud monitoring options: direct monitoring,
where a DevOps engineer has to focus on monitoring, or
peripheral monitoring where engineers focus on another task
but use their subconscious to detect changes so that their focus
can shift back to the monitoring task when necessary [2].

Current state-of-the-art dashboards either use direct moni-
toring or are based on binary alarms, even though peripheral
displays have been determined effective and more efficient
in the past [3].

To our knowledge, there is no broad platform comparable
to MultiSense – neither as architectural concept and frame-
work as in MultiSense nor as a prototypical implementation.
However, there is some work on peripheral visual displays
which have been proposed to enable monitoring for a
particular source of information while working on a primary
task. These displays naturally lend themselves to use as part
of MultiSense. Examples of such displays are Live Wire,
Waterland, or Pinwheels [4], [5].

Existing work that uses audio outputs, e.g., [3], [6] and is,
thus, comparable to our AudioCues prototype is inherently
based on discrete immutable audio events whereas our focus
is on creating a stream of continuously changing surroundings
– either through music as in the case of our prototype or



through aspects like room temperature or ambient lighting
in the broader MultiSense.

III. MULTISENSE

In this section, we will give an overview of MultiSense
and discuss environmental parameters that can be controlled.

A. Architecture and Components
On a high level, the MultiSense architecture follows a

sensor-actuator model and can be divided into three parts.
Figure 1 gives an overview of these parts:

The first part, the left section of the figure, comprises the
metric producers. Here, we can use any monitoring system,
e.g., Ganglia or Amazon CloudWatch. Any system that offers
monitoring data, either via pull or push mechanisms, can be
plugged in through an adapter mechanism.

Within the core components of MultiSense, the second
part, metric consumers periodically poll their metric producer
adapters for recent monitoring data from the underlying
systems and transform this stream of data points into a
stream of standard monitoring events. The events of this
stream are passed on to independent metric monitors which
serve as a kind of information hub. For each registered metric,
e.g., the CPU utilization of a particular virtual machine, they
have a single registered metric analyzer component which
normalizes the stream of monitoring events into a standard
score – we have used a value range of zero (normal state)
to a hundred (highly critical state). Based on this, the metric
monitors publish raw (score) values as well as different
aggregates to a pub/sub system.

The third part, the control targets, comprise physical and
software systems, which are able to affect the developer’s
environment on a continuous scale, as well as the necessary
control software which registers for topics of the pub/sub
system and sends control commands to their underlying
control target based on received scores. For instance, a
controller may decide to increase the speed of the ceiling
fan upon receiving two different scores.

B. Potential Control Targets
All control targets share some basic commonalities: they

do not have a binary state (in fact, a continuum is preferable)
and can be controlled through electronic steering commands.
Furthermore, they all affect a developer’s environment, i.e.,
the way he or she feels due to impressions on different
senses.

For example, many people like to listen to music while
they work in a highly concentrated way. To gradually raise
awareness, we could adjust overall playback volume or
equalizer settings, i.e., per-frequency volumes, based on
our normalized scores. Another option would be to change
brightness and color of ambient lights or even to affect
temperature, air flow and humidity through modern smart
home appliances. There are virtually no limitations to which
devices can be used.

Metric 
Monitor 

Metric 
Consumer 

Pub/Sub System
 

Metric 
Analyzer 

[0;100] 

[0;100] 

CPU 
Utilization 

Memory 
Utilization 

Disk I/O 

Request 
Latency 

Failure Rate 

… 

Metric 
Consumer 

… 

Metric Producers Control Targets 

Figure 1. High-Level Architecture of MultiSense

IV. CONCLUSION

In this paper, we have proposed a framework and approach
that leverages the ability of the human subconscious to
detect deviations from a “normal” state. To reach this
goal, we use cloud monitoring data to control various
aspects of developers’ environments, thus, enabling them
to subconsciously become aware of faulty system states,
e.g., through color changes in the ambient lighting or
dissonances in the music output. Existing approaches, in
contrast, could only express binary state changes (alarms)
or required developers to dedicate their full attention to
observing monitoring data.

In future work, we will continue to implement MultiSense
by completing and extending our AudioCues prototype to also
include control functionality for various smart devices, e.g.,
ambient lighting or air conditioning. We also plan to carefully
evaluate MultiSense and AudioCues through empirical studies
and further proof-of-concept prototypes.

REFERENCES

[1] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s
Perspective. Addison-Wesley Professional, 2015.

[2] P. Vickers, “Sonification for process monitoring,” in The
Sonification Handbook. Logos, 2011, pp. 455–492.

[3] M. Barra, T. Cillo, A. De Santis, U. F. Petrillo, A. Negro,
V. Scarano, T. Matlock, and P. P. Maglio, “Personal webmelody:
Customized sonification of web servers,” Proc. of ICAD, 2001.

[4] M. Weiser and J. S. Brown, “The coming age of calm
technology,” in Beyond calculation. Springer, 1997, pp. 75–85.

[5] A. Dahley, C. Wisneski, and H. Ishii, “Water lamp and
pinwheels: ambient projection of digital information into
architectural space,” in Proc. of CHI. ACM, 1998.

[6] O. Liechti, M. Sifer, and T. Ichikawa, “A non-obtrusive user
interface for increasing social awareness on the world wide
web,” Personal Technologies, vol. 3, no. 1-2, pp. 22–32, 1999.


