
Understanding the Container Ecosystem: A
Taxonomy of Building Blocks for Container

Lifecycle and Cluster Management
Dominik Ernst, David Bermbach, Stefan Tai

Information Systems Engineering Research Group
TU Berlin

Berlin, Germany
Email: de,db,st@ise.tu-berlin.de

Abstract—Container technologies, skyrocketing in popularity,
are diverse and difficult to compare. In particular, components
which are involved in running containers in dedicated and man-
aged environments are hard to grasp but essential for a practical
adoption. By providing an analysis of a large number of state-of-
the-art software projects we create a taxonomy of building blocks,
which constitute the cornerstones of the container ecosystem. The
taxonomy is shown to be applicable to systems in the context
of container technology, but requires an understanding of their
inside functionality.

I. INTRODUCTION

Container technology is rapidly gaining popularity among
developers and scientists alike. Docker [1] plays a major
role with respect to this gain in popularity, as it attracts
users by abstracting from low-level implementations through
a unified API. Ever since, a lot of other projects integrating
or relying on containers have been established. Frameworks
for the management of container clusters, such as Kubernetes
[2] by Google, declare the abstraction from physical hosts as
their goal and include a set of tools to manage large numbers
of containers independently of the underlying infrastructure.
Also, operating systems are developed being optimized for
the execution of containers on large physical clusters, called
Datacenter Operating Systems (DCOS). Similarly, projects
targeting networking, packaging, scheduling and many other
aspects for containers are created, which lead to the establish-
ment of an entire ecosystem around this technology.

A major issue of this ecosystem, which is mainly driven by
open source projects, is the lack of clear functional demarca-
tion of different components. In fact, capabilities and scopes of
existing projects overlap. Similarly, we found terminology in
literature to be inconsistent. Motivated by this lack of clarity,
we contribute to an overview of the currently evolving techno-
logical cornerstones in the container ecosystem. We identify
and coin features, which typically are provided as a self-
contained software component, by the assessment of existing
projects and their employed terminology. This results in the
following contributions: (1) a taxonomy of building blocks
for the container ecosystem, (2) an overview of current state-
of-the-art software projects, which match identified building

blocks, (3) an application of the proposed taxonomy to a set
of projects.

The paper is structured as follows: Section II provides and
overview of technology fundamentals and outlines current
issues related to the adoption of containers, particularly in the
Cloud. Section III introduces the taxonomy of building blocks,
which are applied to a set of open source projects in section
IV. In section V we show the lack of clarity in related work,
by comparing used terminology with the proposed taxonomy.
At last a conclusion and outlook on possible future research
are presented in section VI.

II. FUNDAMENTALS AND OPEN ISSUES

This section provides a short summary of technology funda-
mentals and current challenges, which inevitably occur during
the adoption of containers to run applications in a manageable
and productive fashion.

The basic, technological enablers for containers have existed
for a few years. Containers are based on a set of kernel
features of Unix and Linux systems. The two most critical
among these features are (1) logical separation and isolation of
process execution and (2) resource limitations for processes.
In Linux kernels, the respective capabilities are realized by
implementations called namespaces and control groups, which
in turn find adoption by various higher-level implementations,
for example LinuXContainers(LXC) [3] and Docker’s runC
[4] (formerly called libcontainer).

Containers as such are a means of Operating System Virtu-
alization, because to processes running inside, the environment
appears to be a bare metal system. Similar to the use in
[5], the term container in this work is used to refer to one
or more processes running in an isolated fashion, where
isolation is enforced by OS-kernel features. The term container
is coined by the aforementioned Linux implementation for
process isolation. In this paper, we will stick to the term
container, because we feel it to be the most commonly used
within the community. If it is necessary to distinguish multiple
types of containers, we will also use the term OS-containers.

Containers find adoption among practitioners across all
phases of the software development process. The DevOps

paradigm can be seen as a conceptual counterpart for that.
For developers and especially operators, however, advantages
of containers are not obvious and come at a price: the up-
front setup of infrastructure, which is required to avoid a
completely manual wiring of applications being deployed in
containers. Cloud platforms and providers also make use of
containers, with PaaS platforms as the pioneers of adopting
container technology in their products. Major IaaS providers,
such as Google with their Container Engine and Amazons
Elastic Container Service, are also offering solutions to run
containers. VMs, however, remain their first-class citizens in
the datacenter due to unproven tenant isolation and lacking
technological maturity of container technology. In general,
gaining an overview on concepts and existing projects within
the container ecosystem already proves difficult. We contribute
to break up this entrance barrier, by providing a holistic,
conceptual view on containers and their environment in this
work.

III. CONTAINER BUILDING BLOCKS

This section introduces the taxonomy of building blocks,
which we found to be distinguishable when using containers
as the unit for deploying and managing software in a scalable
manner and across a cluster of host machines. Each building
block is derived from existing projects or systems providing
the respective features. We further subdivide building blocks
along two classes: those involved in the lifecycle management
of a single container (sect. III-A) and those which support
the management of groups of containers across a cluster of
hosts (sect. III-B). An overview of all building blocks of
the taxonomy is shown in Fig. 1. We limit building blocks

Cluster Management
Lifecycle

Management

Runtime
Engine

Driver

Repository Orchestrator
Resource
Monitor

State
Storage

Scheduler

Overlay
Network

Discovery
Service

Runtime
Engine

Driver Repository

Image

executes /
creates

manages /
publishes

Image
Description

Mapping of
container to

kernel-specific
control

Lifecycle and
resource

control; state
monitoring

Version-
control-like
interface;
external
service

Orchestrator
Resource
Monitor

State
Storage

Scheduler
Overlay
Network

Discovery
Service

Image

Depends on

Fig. 1. A Taxonomy of Building Blocks

to functional elements of the container ecosystem. Building
blocks may depend on each other. The connecting element
between lifecycle management and cluster management is the
container engine, which is described next.

A. Building Blocks: Lifecycle Management

Elements of lifecycle building block, described here, are
grouped under the common criterion of enabling lifecycle
management for single containers. We identified four building
blocks: (a) Runtime Engine, (b) Driver and (c) Repository.

Cluster Management
Lifecycle

Management

Runtime
Engine

Driver

Repository Orchestrator
Resource
Monitor

State
Storage

Scheduler

Overlay
Network

Discovery
Service

Runtime
Engine

Driver Repository

Image

executes /
creates

manages /
publishes

Image
Description

Mapping of
container to

kernel-specific
control

Lifecycle and
resource

control; state
monitoring

Version-
control-like
interface;
external
service

Orchestrator
Resource
Monitor

State
Storage

Scheduler
Overlay
Network

Discovery
Service

Image

Depends on

Fig. 2. Building Blocks: Lifecycle

These components rely on additional artifacts, a central one
being (d) Container Images. An overview of the components
including a “uses” relationship indicated by arrows, is shown
in Fig. 2.

a) Runtime Engine: A (Container) Runtime Engine pro-
vides the interface for lifecycle-management of single con-
tainers. Thus, a runtime engine spawns, starts, stops and
destroys a container. Runtime engines also provide snapshot
and clone functionality for a container and control resource
consumption and container access to host system resources. A
runtime engine also manages the mapping of devices across a
container’s boundaries. As a result, virtual network interfaces
and filesystem access are to some extent managed by a
runtime engine. In particular, the host-container-interaction
wrt. network features is an intersection point with cluster-
wide management, where an Overlay Network takes control.
Resource consumption for containers is also controlled by the
engine. Runtime engines rely on Container Drivers to map
lifecycle controls and resource control to lower-level system
calls. Runtime engines use specific types of Container Image
Descriptions and Images as input. A runtime engine unpacks
and interprets these images and manages their execution.

Docker started out as a runtime engine and at time of writing
still is the most popular one, but has developed into a more
comprehensive tool. Other container engines for Linux are rkt
[6], LXD [7] and Warden [8]. From both a terminology and
functional perspective there are a lot of similarities between
a container engine, for OS-container virtualization, and a
hypervisor, for hypervisor-based virtualization.

b) Driver: A Driver is responsible for the execution
of kernel-specific functions which make up the “core” of a
container. Staying with the Linux example, this comes down to
namespaces and cgroups. There are various container drivers.
The default one of Docker is runC [4], which was recently
donated to the Open Containers Initiative1 but started as their
proprietary driver, called libcontainer. Others include LXC [3],
OpenVZ [9], FreeBSD Jails [10] and Solaris Zones [11].

c) Repository: A repository is a central place for storing,
publishing and sharing of Container Image Descriptions and
Images. A repository provides access to pre-built container

1http://www.opencontainers.org/

http://www.opencontainers.org/

Cluster Management
Lifecycle

Management

Runtime
Engine

Driver

Repository Orchestrator
Resource
Monitor

State
Storage

Scheduler

Overlay
Network

Discovery
Service

Runtime
Engine

Driver Repository

Image

executes /
creates

manages /
publishes

Image
Description

Mapping of
container to

kernel-specific
control

Lifecycle and
resource

control; state
monitoring

Version-
control-like
interface;
external
service

Orchestrator
Resource
Monitor

State
Storage

Scheduler
Overlay
Network

Discovery
Service

Image

Depends on

Fig. 3. Building Blocks: Cluster Management

images and offers an interface for the management of image
descriptions, which is similar to that of version control sys-
tems. This description is derived from the features of Docker’s
DockerHub [12], as to the authors’ knowledge, no other
dedicated open source projects for container image repositories
exists.

d) Container Image and Image Description: A (Con-
tainer) Image essentially consists of an archive of a filesystem
tree. This includes all installed libraries and user changes
on top of the very basic OS kernel. Images are passed
to a container runtime engine, which prepares the image
(decompressing, possibly downloading requirements) sets up
the environment and creates a runnable copy of it - the
container. An image can be (re-)created by building it from
the corresponding Image description which is a document
containing a machine-readable description for the creation of
an image and provided by a repository. Images can also be
created based on the snapshots of existing containers.

There are multiple formats for image descriptions, which
differ in semantics and scope. The AppC container image
description [13] includes runtime dependencies on other con-
tainers, as well as environment requirements to run an image.
Docker’s container image descriptions, the so-called “Docker-
files”, are more minimalistic and focus on a single container,
excluding requirements regarding the execution environment.
Docker images by default implement a layered file system,
AuFS2 for containers. Combined with the Dockerfile image
descriptions which contain references to base-images, an in-
cremental image creation and sharing process is possible.

B. Building Blocks: Cluster Management

The second group of buildings blocks of the container
ecosystem are used for the management of containers on
distributed hosts. Six building blocks are distinguished: (a)
Orchestrator, (b) Discovery Service, (c) Overlay Network,
(d) State Storage, (e) Scheduler and (f) Resource Monitor.
An overview of the components with a “depends on” relation-
ship, indicated by arrows, is shown in Fig. 3.

a) Orchestrator: Orchestration, as a term from the soft-
ware architecture domain, comprises concepts on how software
artifacts are organized and interact at runtime. For containers,
an Orchestrator manages deployment procedures and environ-
mental constraints of containers across multiple servers.

2http://aufs.sourceforge.net/

To accomplish the management of different types of con-
tainers with interdependencies and specific requirements, an
orchestrator relies on the concept of coherent units. This con-
cept plays an important role for managing containers across a
cluster: A coherent unit logically combines a set of containers,
which will be managed as one. Containers which are part
of the same coherent unit share resources and a common
lifecycle. In addition, a coherent unit has to be assigned to a
suitable host, where environment constraints are fulfilled. This
placement decision is made by a Scheduler. Communication
between coherent units is typically handled by an Overlay
Network, as it provides a homogeneous view of networking for
both intra- and inter-host communication. Finally, a Discovery
Service, with agents typically placed on every host of a cluster,
acts as an endpoint for the orchestrator to information on
liveness and provides other state-related data of containers. An
orchestrator may also use additional monitoring data provided
by Resource Monitors, which collect data on a per-host basis.

An example for an orchestrator is Kubernetes [2]. The
project is described as a “container cluster management soft-
ware” and coherent units are referred to as pods. Similarly,
Docker’s Compose [14] allows developers to specify coherent
units of containers for single hosts, while Swarm [15] offers a
similar functionality for a cluster of hosts. Marathon [16] also
provides orchestration functionality, but its distinction from a
scheduler is not completely clear.

b) Discovery Service: Application design favors a static
access to different layers of services. However, containers,
encouraging the use of more fine-grained components and
shorter lifecycles, are highly dynamic in nature. To address this
mismatch, a Discovery Service exposes static endpoints which
are dynamically mapped to running containers. Each host
runs a component, called discovery agent, which monitors its
local containers’ lifecycles and publishes this state. Discovery
agents coordinate and store data in a consistent manner using
State Storage. A cluster-wide discovery is usually supported by
an overlay network, which wraps containers’ interconnections
in a transparent way, and also relies on State Storage.

Existing orchestrators either include discovery agents, e.g.,
Kubernetes [2], or can be integrated with an external discovery
service. The Mesosphere [17] DCOS comes with Mesos-DNS
as an integrated discovery service. Weave [18], an overlay
networking project, also includes a discovery service.

c) Overlay Network: Using containers to run distributed
applications creates three challenges related to networking:

1) Communication between containers on the same host
naturally becomes network communication.

2) A mapping of logical network interfaces to physical
network interfaces of the host system is necessary.

3) Containers must be able to communicate across hosts.

These three challenges are approached by various solutions
from the domain of software-defined networking. (1) is par-
tially solved by container engines, which manage the vir-
tualized network interfaces of containers on a single host.
This means network traffic is IPC, virtualized and masked.

http://aufs.sourceforge.net/

Docker, for example, offers a multitude of options for single-
host networking, which sometimes require deep knowledge of
the networking stack in Linux. By default, virtual Ethernet
interfaces are created for each container, which then can
communicate via the virtual network interface docker0 with
other network interfaces through exposed ports. This Docker
bridge also supports forwarding of traffic through the external
host interface thus enabling conditions (2) and (3). For few,
mostly static containers, this is feasible by manually setting
up the hosts. However, for larger scale deployments and
more practical management of possibly ephemeral containers,
Overlay Networks are used to address both (2) and (3).

Overlay networks are software solutions, which run agents
on each host, through which the mapping of network ports
and traffic is handled. Flannel [19] is such an overlay network.
Flannel can be attached to Docker networking and allows the
abstraction from physical hosts by maintaining the network
configuration for the entire cluster. Network configuration
is stored using State Storage. Other network solutions for
containers include Calico [20], Weave [18], Pipework [21] and
Docker’s libnetwork [22].

d) Scheduler: Schedulers in the context of containers
assume a global point of view and are responsible for the
distribution of containers or groups thereof across available
hosts. A scheduler allocates resources to tasks according to
a set of rules. Container schedulers, due to a possibly much
higher amount of containers than hosts, should scale well with
both cluster size and number of containers. Other than that,
they ensure that resource capacity constraints are not violated
and handle load distribution over a cluster of machines. Con-
tainer schedulers consequently manage resource allocation and
placement of containers, but also handle operations affecting
scale and depend on up-to-date information of cluster state,
relying on State Storage. Schedulers are also the interface
for deployment: a scheduler receives the specification for
a container or a coherent unit of multiple containers and
manages lifecycle and placement over multiple hosts.

Kubernetes [2] includes a scheduler whose architecture
resembles Google’s Omega [23], which in turn inspired a few
other schedulers for containers. Other projects which provide
scheduling capabilities include Marathon [16], fleet [24] and
Swarm [15]. Schedulers are often pluggable components of
orchestrators.

e) State Storage: Configuration of containers is required
in a similar manner to VMs. Containers, however, can be
deployed with a higher density and are more dynamic in
nature, for example batch jobs may be run in ephemeral
containers. Cluster-wide features, such as the already discussed
scheduling and discovery, require a consistent and up-to-date
view of cluster state. This state is stored in a database service,
which consequently becomes an integral part of the container
ecosystem and we call State Storage.

Due to the potentially high number of containers which
are spread across multiple hosts, the database should be
fast, natively distributed and scale well with the number of
requests. As the data model for state information can (and

should) be kept rather simple, key-value stores dominate the
currently existing solutions. Current systems also share a
subscription/listening capability, which allows clients to be au-
tomatically informed about updates. All popular projects rely
on consensus algorithms to ensure some form of consistency.
Apache Zookeeper [25] is a well-known system fulfilling
these requirements, implementing the ZAB protocol [26] for
consensus. Others are etcd [27] and Consul [28], which both
use the Raft [29] consensus protocol.

f) Resource Monitor: Managing a larger cluster of con-
tainers and hosts requires information about resource utiliza-
tion and health on multiple levels. For users of a platform,
a detailed status of their own containers is desirable, while
providers will be interested in resource utilization and status
of a whole cluster of containers or machines. In a VM it is
possible to use OS means to measure resource consumption,
but for a container this is not possible. The reason is that
each container sees all host resources. As a result, measures
like CPU utilization are invalid when measured from inside
a container, as they reflect overall state of the host system.
One option is to run a monitoring system, which hooks into
the container driver’s local resource allocations. Docker’s stats
command does this for containers running with Docker and
can provide data either in textual or JSON format. cAdvisor
[30] is a solution with pluggable driver support and also
requires root access on the host system. A cluster-wide moni-
toring can be built on top of these solutions. Heapster [31]
is such a project, which is closely coupled to Kubernetes.
Getting application-specific metrics from containers into a
dashboard or storage back-end must be done using software
not specific to containers. We found the container ecosystem
to be generally lacking well-integrated monitoring solutions.
Host resource utilization for CPU and RAM are the most
common metrics.

IV. APPLYING THE TAXONOMY: A SNAPSHOT OF THE
CONTAINER ECOSYSTEM

Using the proposed taxonomy, we map the described build-
ing blocks onto the container ecosystem, which is represented
by a set of software projects and tools. The ecosystem, at the
time of writing, is evolving rapidly in the context of open
source projects. As a result, we can only provide a snapshot
and have no claim of providing a comprehensive list of existing
projects. We selected one project each, which is clearly posi-
tioned within the respective block. Other than that, we selected
projects which do not match distinct blocks. The application
of the taxonomy is shown in Tab. I, where an x indicates a
complete integration of the respective feature, while (x) signals
a partial integration. Partial integration means functionality
to occupy the respective building block is implemented, but
either is very simple and limited or not clearly distinguishable
from other features central to the projects goal. We found it
possible to identify at least one project which matches exactly
the boundaries of a building block - the exception being
container discovery. Our experience showed that the mapping
to our taxonomy was difficult. The main reason for that was

Runtime Engine Driver Repository Orchestrator Scheduler State Storage Discovery Resource Monitor Overlay Network
rkt [6] x

runC [4] x
DockerHub [12] x

Marathon [16] x (x)
Chronos [32] x

etcd [27] x
cAdvisor [30] x

flannel [19] x
Docker [1] x (x)

Kubernetes [2] x (x) (x) (x)
Docker Swarm [15] (x) x (x) (x)

Weave [18] x x

TABLE I
APPLICATION OF THE TAXONOMY TO EXISTING SOFTWARE PROJECTS.

unclear terminology. Discrepancies between documentation,
claims and actually provided features of software projects
added to the required effort. We shortly want to discuss some
projects, which we categorized as having partial integration of
building blocks.

Marathon, according to our taxonomy, is an orchestrator
as it allows the cluster-wide management of services running
in containers and includes a model for grouping contain-
ers. However, it also allows users to directly influence the
placement of specific containers, without delegating this to a
distinct scheduling component or providing other functionality
expected of a scheduler, for example automated assignment
of ephemeral tasks to hosts. A similar case can be made
for Kubernetes, which on top of scheduling does the same
for discovery and monitoring: the orchestration functionality
incorporates some functionality of these blocks, for example
simplified monitoring and a DNS-like discovery.

V. RELATED WORK

So far, there is no explicit effort in literature3 to distinguish
and name different elements within the ecosystem of container
technology. In conclusion, related work is taken from two
fields, which employ related terminology in their research.

The first field is focused on the technological foundations
of containers. This currently amounts to systems research,
where containers have been looked at particularly in the
context of high-performance computing, and the application
of container technology in the context of PaaS. Within the
systems research domain Matthews et al. in [34] were one of
the first to consider OS-containers an alternative to hypervisor-
based virtualization. They compared containers to VMs along
the dimension of performance isolation. Soltesz et al. [35]
were the first to emphasize advantages of containers regarding
performance overhead. Both of these works do not differentiate
components used to create an environment for containers and
subsume everything under “VM”, including containers. Felter
et al. [36], also comparing performance overhead between
containers and VMs, provide an overview of Linux container
drivers’ functionality. They lack a differentiation between

3There is, however, a very extensive tutorial series on the container
ecosystem with a more practical, technology-centric focus, which employs
similar terminology for cluster management features by DigitalOcean [33]

container driver and container engine, calling both “tools to
manage containers” [36, p. 4].

Still within the first field of related work, we further identi-
fied two contributions focusing on the application of container
technology in the context of PaaS [37], [38]. These approaches
analyze technical properties of different container engines and
drivers and their impact on relevant PaaS-aspects, such as
tenant isolation. We found these works to be lacking precise
and distinct terminology for containers and their environment,
which is a consequence of the aforementioned viewpoint. Dua
et al. simply refer to both drivers and engines as “container
implementation” [37, p. 610]. Pahl refers to the container
driver as “engine” [38, p. 25], while tools like Docker receive
no label. He also mentions a container ecosystem, which
according to his understanding only includes a container driver
(again called “engine”) and a repository. Pahl also looks at
cluster management for containers across hosts, but does not
label or categorize elements clearly.

The second field of related work is centered on design and
architecture of systems within the context of cloud applications
using container technology. Two contributions exist looking
at orchestration [39] and microservice-architectures [40] for
containers. While Tosatto et al. distinguish container driver
and engine (specifically for Docker), they call the latter an
“orchestrator” [39, p. 73], but later, contradictorily, identify
fleet and Docker Compose as orchestration solutions on top of
Docker. Toffetti et al. [40] focus on the management of clusters
of containers, emphasizing discovery and distributed state
storage. They implement their own framework for enabling a
“self-managing atomic service” and name orchestration and
discovery as features. While they are not inconsistent wrt.
terminology, they do not distinguish clearly between discovery
and state storage, as well as orchestration and scheduling.

VI. CONCLUSION AND FUTURE WORK

Containers are the driving technology for the DevOps
paradigm and considered a technological counterpart for mi-
croservices. Containers have been compared to VMs, but pose
new challenges regarding operation and management. Looking
at the lack of conceptual clarity in existing literature and state-
of-the-art software projects related to container technology,
we contribute to the identification and distinction of relevant
cornerstones within this newly emerging ecosystem. This

results in the set of building blocks as described in sect.
III. We subdivide building blocks into two groups: the first
group is involved in the lifecycle management of containers
on a per-host basis, while the second group contributes to the
management of clusters of containers across multiple hosts.
Each group has one focal point, which is the container engine
for lifecycle management and a container orchestrator for
cluster management. By applying the taxonomy to existing
projects, we show that a disambiguation is feasible. However,
this insight required a look at either documentation or imple-
mentation details of the respective software projects, proving
the lack of commonly used terminology.

For future work, two research directions are very promising.
The first direction is container-based software application
architectures, in particular microservice-based architectures.
While a lot of best practice approaches related to the develop-
ment process of software along the concept of microservices
exist, architectural viewpoints on the design of applications
and storage are lacking. The efficient usage of microservices
depends highly on the environment and consequently is subject
to limits of the container ecosystem. The second research
direction is the experimental evaluation of container-based sys-
tems and architectures wrt. different QoS aspects, in particular
scalability and elasticity.

REFERENCES

[1] Docker. [Online]. Available: https://www.docker.com/ [Accessed:
01/31/2016]

[2] Kubernetes cluster management. [Online]. Available: http://kubernetes.
io/ [Accessed: 01/31/2016]

[3] LXC: Linux Containers - What’s LXC? [Online]. Available: https:
//linuxcontainers.org/lxc/introduction/ [Accessed: 01/31/2016]

[4] runc. [Online]. Available: https://github.com/opencontainers/runc
[Accessed: 01/31/2016]

[5] V. Marmol, R. Jnagal, and T. Hockin, “Networking in Containers and
Container Clusters,” 2015.

[6] rkt app container runtime for linux. [Online]. Available: https:
//github.com/coreos/rkt [Accessed: 01/31/2016]

[7] LXD - ”container hypervisor”. [Online]. Available: https:
//linuxcontainers.org/lxd/introduction/ [Accessed: 01/31/2016]

[8] Warden. [Online]. Available: https://docs.cloudfoundry.org/concepts/
architecture/warden.html [Accessed: 01/31/2016]

[9] OpenVZ. [Online]. Available: http://openvz.org/Main Page [Accessed:
0/30/2015]

[10] FreeBSD Jails. [Online]. Available: http://www.freebsd.org/cgi/man.
cgi?query=jail&format=html [Accessed: 01/31/2016]

[11] Solaris Zones. [Online]. Available: http://docs.oracle.com/cd/E26502
01/html/E29024/preface-1.html [Accessed: 01/31/2016]

[12] Docker Hub. [Online]. Available: https://hub.docker.com/ [Accessed:
01/31/2016]

[13] appc app container specification. [Online]. Available: https://github.
com/appc/spec [Accessed: 01/31/2016]

[14] Docker Compose. [Online]. Available: https://docs.docker.com/compose/
[Accessed: 01/31/2016]

[15] Docker Swarm. [Online]. Available: https://docs.docker.com/swarm/
[Accessed: 01/31/2016]

[16] Marathon. [Online]. Available: https://mesosphere.github.io/marathon/
[Accessed: 01/31/2016]

[17] Mesosphere. [Online]. Available: http://docs.mesosphere.com/ [Ac-
cessed: 01/31/2016]

[18] Weave. [Online]. Available: http://weave.works/ [Accessed: 01/31/2016]
[19] flannel. [Online]. Available: https://github.com/coreos/flannel [Accessed:

01/31/2016]
[20] Project Calico. [Online]. Available: http://www.projectcalico.org/

[Accessed: 01/31/2016]

[21] Pipework. [Online]. Available: https://github.com/jpetazzo/pipework
[Accessed: 01/31/2016]

[22] libnetwork. [Online]. Available: https://github.com/docker/libnetwork
[Accessed: 01/31/2016]

[23] M. Schwarzkopf and A. Konwinski, “Omega: flexible, scalable
schedulers for large compute clusters,” EuroSys ’13 Proceedings of the
8th ACM European Conference on Computer Systems, pp. 351–364,
2013. [Online]. Available: http://dl.acm.org/citation.cfm?id=2465386

[24] fleet. [Online]. Available: https://github.com/coreos/fleet [Accessed:
01/31/2016]

[25] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “ZooKeeper:
Wait-free Coordination for Internet-scale Systems.” USENIX Annual
Technical . . . , vol. 8, pp. 11–11, 2010. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1855851$\delimiter”026E30F$nhttps:
//www.usenix.org/event/usenix10/tech/full{ }papers/Hunt.pdf

[26] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” Proceedings of the International
Conference on Dependable Systems and Networks, pp. 245–256, 2011.

[27] etcd. [Online]. Available: https://coreos.com/etcd/ [Accessed:
01/31/2016]

[28] Consul. [Online]. Available: https://www.consul.io/ [Accessed:
01/31/2016]

[29] D. Ongaro and J. Ousterhout, “In Search of an Understandable
Consensus Algorithm,” in Proceedings of the 2014 USENIX
Annual Technical Conference, 2014, pp. 305–320. [Online].
Available: http://74.207.243.117/var/blurbs/pubs/raft-tr14.pdfhttp://dl.
acm.org/citation.cfm?id=2643634.2643666

[30] cAdvisor. [Online]. Available: https://github.com/google/cadvisor
[Accessed: 01/31/2016]

[31] Heapster. [Online]. Available: https://github.com/kubernetes/heapster
[Accessed: 01/31/2016]

[32] Chronos. [Online]. Available: https://mesos.github.io/chronos/ [Ac-
cessed: 01/31/2016]

[33] J. Ellingwood. Tutorial Series: The Docker Ecosystem.
[34] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,

G. Hamilton, M. McCabe, and J. Owens, “Quantifying the Performance
Isolation Properties of Virtualization Systems,” 2007, p. 6. [Online].
Available: http://doi.acm.org/10.1145/1281700.1281706

[35] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization,” ACM SIGOPS Op-
erating Systems Review, vol. 41, p. 275, 2007.

[36] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated
Performance Comparison of Virtual Machines and Linux Containers,”
Technology, vol. 25482, 2014.

[37] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs Containerization
to Support PaaS,” in 2014 IEEE International Conference on Cloud
Engineering. IEEE, mar 2014, pp. 610–614. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903537

[38] C. Pahl, “Containerization and the PaaS Cloud,” 2015.
[39] A. Tosatto, P. Ruiu, and A. Attanasio, “Container-Based Orchestration

in Cloud: State of the Art and Challenges,” 2015 Ninth International
Conference on Complex, Intelligent, and Software Intensive Systems,
pp. 70–75, 2015. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7185168

[40] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, and A. Edmonds,
“An architecture for self-managing microservices,” in Proceedings of
the 1st International Workshop on Automated Incident Management
in Cloud - AIMC ’15. New York, New York, USA: ACM Press,
2015, pp. 19–24. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2747470.2747474

https://www.docker.com/
http://kubernetes.io/
http://kubernetes.io/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://github.com/opencontainers/runc
https://github.com/coreos/rkt
https://github.com/coreos/rkt
https://linuxcontainers.org/lxd/introduction/
https://linuxcontainers.org/lxd/introduction/
https://docs.cloudfoundry.org/concepts/architecture/warden.html
https://docs.cloudfoundry.org/concepts/architecture/warden.html
http://openvz.org/Main_Page
http://www.freebsd.org/cgi/man.cgi?query=jail&format=html
http://www.freebsd.org/cgi/man.cgi?query=jail&format=html
http://docs.oracle.com/cd/E26502_01/html/E29024/preface-1.html
http://docs.oracle.com/cd/E26502_01/html/E29024/preface-1.html
https://hub.docker.com/
https://github.com/appc/spec
https://github.com/appc/spec
https://docs.docker.com/compose/
https://docs.docker.com/swarm/
https://mesosphere.github.io/marathon/
http://docs.mesosphere.com/
http://weave.works/
https://github.com/coreos/flannel
http://www.projectcalico.org/
https://github.com/jpetazzo/pipework
https://github.com/docker/libnetwork
http://dl.acm.org/citation.cfm?id=2465386
https://github.com/coreos/fleet
http://portal.acm.org/citation.cfm?id=1855851$\delimiter "026E30F $nhttps://www.usenix.org/event/usenix10/tech/full{_}papers/Hunt.pdf
http://portal.acm.org/citation.cfm?id=1855851$\delimiter "026E30F $nhttps://www.usenix.org/event/usenix10/tech/full{_}papers/Hunt.pdf
http://portal.acm.org/citation.cfm?id=1855851$\delimiter "026E30F $nhttps://www.usenix.org/event/usenix10/tech/full{_}papers/Hunt.pdf
https://coreos.com/etcd/
https://www.consul.io/
http://74.207.243.117/var/blurbs/pubs/raft-tr14.pdf http://dl.acm.org/citation.cfm?id=2643634.2643666
http://74.207.243.117/var/blurbs/pubs/raft-tr14.pdf http://dl.acm.org/citation.cfm?id=2643634.2643666
https://github.com/google/cadvisor
https://github.com/kubernetes/heapster
https://mesos.github.io/chronos/
http://doi.acm.org/10.1145/1281700.1281706
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903537
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903537
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7185168
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7185168
http://dl.acm.org/citation.cfm?doid=2747470.2747474
http://dl.acm.org/citation.cfm?doid=2747470.2747474

	Introduction
	Fundamentals and Open Issues
	Container Building Blocks
	Building Blocks: Lifecycle Management
	Building Blocks: Cluster Management

	Applying the Taxonomy: A Snapshot of the Container Ecosystem
	Related Work
	Conclusion and Future Work
	References

