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Abstract—In this paper, we describe the design and architec-
ture of SMAC, a system for state management in geo-distributed
container deployments. It supports various common state man-
agement tasks related to distributed container deployments, e.g.,
cluster membership, service discovery, health monitoring and
load monitoring. Furthermore, it exposes a shared data type
abstraction which extensions can be based upon. The system
gives up strong consistency guarantees in favor of availability,
fault tolerance, scalability and performance. As proof of concept,
we implemented SMAC based on a peer-to-peer Conflict-free
Replicated Data Type (CRDT) storage system developed for that
purpose.

I. INTRODUCTION

Loosely coupled microservice architectures are trending and
finding increased adoption. Hence, deployment models have to
support frequent releases of independent software components.
Continuous delivery is, thus, becoming the new normal.

The Docker [1] container engine is frequently used to
realize this continuous delivery process, as (a) containers
are lightweight and fast to provision and (b) the imaging
feature can be used to build easily distributable entities without
external dependencies.

Due to these properties, new software versions are often
rolled out by starting new container instances instead of
applying an update-in-place strategy. The placement of these
new container instances is usually not known a priori when
cluster management tools like Swarm [2] or Kubernetes [3] are
used. A scheduler determines the physical hosts at deployment
time, therefore state information on, e.g., service endpoints,
health, or mastership, may change frequently. However, this
information still has to be made available to all container
instances, both existing and newly spawned ones. Obviously,
keeping it in source code is not an option.

A simplistic approach to this problem is the use of con-
figuration management tools, e.g., Chef, Puppet, or Ansible,
which automatically retrieve and apply configuration informa-
tion after an instance has been launched. This creates severe
overhead, mitigating the advantages (a) and (b), which can
be gained through container adoption. Thus, containerized
applications started using coordination services, e.g., etcd [4]
or Consul [5], which promise to consistently store information
and provide it to a cluster while maintaining high availability.

These coordination services, however, are not suitable for
geo-distributed deployments. To maintain a consistent view of

data stored, they rely on consensus protocols, e.g., Paxos [6] or
Raft [7], which (1) have poor performance properties in geo-
distributed settings due to the necessity to exchange multiple
rounds of messages with a quorum of replicas and (2) cause
unavailabilities for a minority of cluster nodes in case of
network partitions.

How can a geo-distributed service for cluster state informa-
tion exchange be designed to support modern containerized
applications? We made two observations enlarging the design
space:

1) Some cluster state information is always stale or proba-
bilistic in real networks. Health information, for exam-
ple, can never be completely accurate at all times, since
failure detectors are always imperfect in networks with
unbounded communication latency [8].

2) The consensus-based coordination services introduced
before do not provide strong consistency in the default
read mode. Thus, stale data can be read [9].

These observations indicate that staleness can be tolerated in
many cases. For these cases, we propose to relax consistency
guarantees and apply the concept of Conflict-free Replicated
Data Types (CRDTs) to address aforementioned issues.

In this paper, we make two main contributions:
• We describe the architecture of SMAC, a State

MAnagement system for geo-distributed Containers. It
supports asynchronous conflict-free background replica-
tion without requiring a quorum to be available.

• We provide the first implementation of an operation-based
CRDT storage system.

This paper is structured as follows: Section II discusses
existing approaches for propagating state information across
containers and outlines related problems. In order to provide
necessary background, section III introduces the concept of
Conflict-free Replicated Data Types. Afterwards, in section IV,
we describe the architecture of SMAC, a CRDT-based system
for state management for geo-distributed container deploy-
ments. We introduce a proof-of-concept implementation in
section V, before we arrive at a conclusion in section VI.

II. RELATED WORK

In this section, we briefly describe existing approaches to
providing state information in a distributed container deploy-



ment and discuss their suitability for the geo-distributed setting
motivated in section I.

A. Configuration Management

One way to provide information to container instances is the
use of configuration management systems. After an instance
has been launched, a configuration management system ob-
tains information by either pulling it from a central server or
by having it pushed onto the instance by a coordinator. Often,
scripts are executed to ensure an instance’s convergence to a
specified target state. Established configuration management
tools are Ansible [10], Chef [11], and Puppet [12].

This approach requires additional logic to be executed after
launching a container instance, which negates the advantages
of faster provisioning times gained by using container images.
Furthermore, configuration management systems have, if any,
limited support for fault-tolerant geo-distributed operation.
This can lead to heavily outdated information as, for example,
with Chef’s asynchronous pull-based master-slave replica-
tion [13].

B. Coordination Services

In contrast to the configuration management approach,
coordination services do not apply scripts or exchange con-
figuration files. They hold state in a durable way and provide
an API which enables pull- or notification-based information
retrieval. Such services are often used to implement higher
level functionality like container health monitoring, dynamic
service discovery and locking.

There are several existing coordination services which share
closely resembling characteristics: Google developed Chubby
[14], a distributed lock and storage service based on the Paxos
[6] consensus algorithm. It provides a file system abstraction
and aims to provide coordination mechanisms for loosely cou-
pled distributed systems. Yahoo Zookeeper [15], based on the
Zab [16] protocol, also aims to provide coordination services
for distributed systems based on a file-system-like replicated
data structure. The software is open source and provides
means to maintain configuration information and implement
distributed synchronization. Etcd [4] is a distributed, consistent
key-value store for shared configuration and service discovery
based on the Raft [7] consensus protocol. Consul [5] is another
coordination service with a focus on service discovery and
configuration. Based on the Raft [7] consensus protocol, it -
like etcd - implements a distributed consistent key-value store,
but provides additional service discovery and health-checking
features on top of it.

All these services rely on a consensus algorithm, which
requires a high amount of communication between nodes
and leads to unavailabilities of minorities in case of network
partitions. In a geo-distributed setting, this could lead to
unavailabilities of the coordination service in multiple regions.
The consensus-based services are thus optimized for clusters in
a single data center as opposed to geo-distributed deployments.
Unlike many users expect, strong consistency is generally not
guaranteed by these systems in the default read mode. While

writes always require a quorum to succeed, reads can be served
by master nodes directly. Since masters are not guaranteed to
always be unique, reads can in some cases return stale data.

C. Others

Netflix Eureka [17] is a service discovery and load bal-
ancing service designed specifically for the Amazon Web
Services1 cloud. It provides a REST interface and can be
deployed in clusters for availability and fault tolerance. Eureka
does not support geo-distribution, though, since clusters can
not span more than one region and is limited to the service
discovery feature.

Serf [18] is a group membership and failure detection
service based on the SWIM [19] gossip protocol. It is designed
as an eventually consistent peer-to-peer system and puts an
emphasis on efficient and scalable messaging.

Both services are limited in scope and focus on a specific
task related to cluster state management. The SMAC system
introduced in section IV, in contrast, supports various tasks
by building on conflict-free shared data types as data model.
Based on this abstraction, additional cluster state management
functionality can be realized.

III. CONFLICT-FREE REPLICATED DATA TYPES

This section motivates and introduces the concept of
Conflict-free Replicated Data Types, which are used as the
data model and building blocks for higher level functionality
in SMAC. Knowing these data types’ properties and resulting
implications is crucial for understanding the system capabili-
ties and limitations.

Consensus-based coordination services maintain a strongly
consistent view of their data by electing a master and serializ-
ing all operations through that single replica. These operations
are then replayed on all other replicas (slaves). Some services
allow reading from slaves directly to reduce load on the master
as well as latency. Since, in that case, read operations are
not serialized through the master, stale data can be read, i.e.,
data, for which a newer version exists on some replica. In
many cases, this is a worthy trade-off, since staleness can be
tolerated by many applications.

Since all writes have to be serialized through a single
replica, coordination services fail to perform in geo-distributed
settings, where communication latencies become large com-
pared to processing times. Furthermore, consensus protocols
require a majority of replicas to be available to successfully
perform a write operation. Thus, network failures can lead to
unavailabilities for partitioned minorities.

To avoid this, every replica should accept writes and dis-
tribute them asynchronously in the background. This intro-
duces a new challenge, though: writes can be concurrent,
which means they do not have a defined order. E.g., an integer
counter could be set to value 3 on one replica, while it is
concurrently set to 5 on another replica. Depending on the
order in which these operations arrive at other replicas, these
replicas can end up in conflicting states.

1http://aws.amazon.com/



There are various strategies to resolve such conflicts, e.g.,
timestamp-based resolution or pushing conflicting versions to
the application layer. There is another approach, however:
Conflict-free Replicated Data Types (CRDTs) avoid conflicts
altogether. CRDTs, a theoretical concept by Shapiro et al. [20],
are shared data types which define their operations in a way,
that they are non-conflicting when concurrent, i.e., the order
of execution does not matter for the result. Due to non-
conflicting operations, all replicas are in equal state as soon as
all information has been delivered to all replicas. The outcome
of concurrent operations, referred to as concurrent semantics,
is part of the data type specification as well. For example,
a ”contains” operation on an element in a set, which was
concurrently added and removed before, could return true or
false depending on the specification.

There is no algorithmic approach to arrive at a CRDT spec-
ification with desired concurrent semantics. Fortunately, the
technical report [21] lists many specifications for various types
with varying concurrent semantics, e.g., last-write-wins, add-
wins, remove-wins. Amongst these data types are counters,
registers, sets, (multi)maps, sequences and graphs.

Based on the replication strategy employed, there are two
types of CRDTs: Commutative Replicated Data Types (Cm-
RDTs) propagate operations, while Convergent Replicated
Data Types (CvRDTs) propagate state. Shapiro et al. [20]
provide a formal proof showing the equality in expressiveness
of the two approaches. We now describe CmRDTs in more
detail, as they are used by the prototype we introduce in
section IV, while CvRDTs are only briefly discussed.

A. Commutative Replicated Data Types

A data type is called Commutative Replicated Data Type,
if it uses operation-based replication and has the following
properties:

1) Updates ordered by the happened-before relation are
executed in that order. Updates not ordered by that
relation are defined as concurrent and can be executed
in any order.

2) A communication channel ensures that replicas receive
all updates in that order.

3) Concurrent updates are commutative.
This definition ensures non-concurrent updates to be applied

in the same order on all replicas. Only concurrent updates may
be applied in different orders on different replicas. Due to the
commutativity property of these updates, the result after the
update operation is the same, independent of order. Hence,
replica states converge given the properties defined above.

To ensure the delivery of all updates to all replicas, a reliable
communication channel is required. Exactly once delivery has
to be guaranteed, since operations are generally not idempo-
tent. Furthermore, the delivery order needs to comply with
the happened-before relation [22], which is also referred to as
causal delivery.

A simple example of a CmRDT is an integer counter:
The data structure itself is a simple integer. There are two
operations: increase, which increases the integer’s value by 1

and decrease, which decreases the value by 1. Obviously, the
increase and decrease operations commute in any case.

We provide the - to our knowledge - first implementation
of a CmRDT storage system in section IV.

B. Convergent Replicated Data Types

A data type is called Convergent Replicated Data Type, if
it uses state-based replication and has a commutative, idem-
potent and associative merge function. This merge function
combines local state and state received from a remote replica
and computes a new state. A communication channel with
eventual delivery is sufficient.

There are multiple systems implementing CvRDTs, e.g.,
Basho Riak [23] or akka [24].

IV. THE SMAC SYSTEM

Based on the the shared data types described in section
III, we designed SMAC, a CRDT-based state management
system for geo-distributed container deployments, which we
now introduce. It can be used as a typical state management
service in geo-distributed deployments, but can also store
and distribute application meta data in a scalable and fault
tolerant way. Not all functionality offered by consensus-based
coordination services can be provided due to the relaxed
consistency model. We argue, however, that such requirements
need to be avoided during design phase in the first place,
as they constitute an inherent performance bottleneck, limit
scalability and impair availability.

In this section, we describe and discuss SMAC’s deploy-
ment, interface, and functionality, before we introduce our
proof of concept implementation in section V.

A. System Overview and Deployment

SMAC is a distributed peer-to-peer system consisting of a
cluster of nodes running SMAC instances. Figure 1 depicts a
typical deployment with one consuming application, which is
co-deployed with a SMAC instance on the same host machine.

A single SMAC instance, however, can support multiple
containerized applications on one host. This instance com-
municates with other instances of the system to replicate
shared data types and with that make them available to
remote application instances. Due to the system’s architecture,
unlike with consensus-based coordination services, no minimal
cluster size is required. The system remains writable as long
as the local SMAC instance is healthy. Due to the nature of
CRDTs, the overall system is available as long as a single
node can be accessed.

B. Interface and Data Model

An application, deployed in a container, accesses a SMAC
instance via a REST interface. This interface provides CRUD2

operations for the data types described in section III, as well
as more advanced operations specific to state management
scenarios, e.g., health monitoring and service discovery.

2Create, Read, Update and Delete
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Fig. 1. SMAC Deployment.

Shared data types are the abstraction SMAC works with
internally for information exchange. Thus, an appropriate
data type has to be chosen manually for every new state
management scenario. To assist with that, we will now show
how we realized three common scenarios, which can serve as
guiding examples when modeling further functionality on top
of CRDTs.

Cluster Health Monitoring: A common state management
scenario is to maintain and make available cluster health
information to members. To realize this, an add-wins set with
timer-based removal of entries can be used: Node IDs (e.g.,
IP addresses) are held in a set. Every time a node receives a
message, it writes the sender’s ID to the set. These messages
can be application-specific or dedicated heartbeats. For each
ID, a local timer is started. After it reaches a certain threshold,
the item is removed, as the node is assumed to be unresponsive
and hence unhealthy. In case of concurrent add and remove
operations, add should take precedence.

Load Monitoring: For scheduling or load balancing pur-
poses, load information can be valuable. The number of open
connections, for example, can serve as a metric. To provide
such values, a map data type can be used: Node IDs are
mapped to integer counters. The counters are increased or
decreased by nodes depending on their active connections.

Service Discovery: Due to dynamic container placements,
service locations change and this information needs to be
available to potential consumers. To realize service discovery,
a last-write-wins register can be used: At startup, the service
writes it’s entry point to this register. Alternatively, a remove-
wins set specification can be used as well. This allows to
expose several endpoints in parallel, which can be useful when

rolling out new versions.

C. Discussion

The SMAC system provides state management in a cluster
while being highly scalable and partition tolerant. It can solve
the availability and latency problem established consensus-
based coordination services have and is highly suitable for
various state management scenarios, as exemplified in IV-A.

Some tasks, however, can not be solved due to the relaxed
consistency model: Locking and leader election, for example,
require strong consistency and can thus not be supported. Such
requirements, however, should be avoided in geo-replicated
systems in the first place, since theoretical results imply that
there is no solution with desirable liveness properties [25].

Consensus-based coordination services become unavailable
for minorities in case of network partitions. While such
outages are easily tolerable in single data center deployments,
they can not be dealt with in geo-distributed settings. In con-
trast to that, SMAC is always available. Information provided
can be stale, but that is certainly preferable compared to having
an unavailable coordination service. Minorities can still make
progress by working with stale data or updating it.

Compared to the key-value interfaces consensus-based co-
ordination services typically provide, the data type abstraction
used in our system requires more thought to be put in how to
map a state management task to the available data structures.
This process, however, is straight forward in most cases as can
be seen in section IV-A.

Besides state management tasks on an infrastructure level,
SMAC can also be used for the exchange of application meta-
data. Especially data related to geo-distributed deployments
can be leveraged rather easily, e.g., trending videos per region
on a video on demand platform.

Write operations in SMAC always return after being ex-
ecuted locally. They are then distributed asynchronously to
other replicas in the background, which results in low response
times. As opposed to this, consensus-based coordination ser-
vices need to forward the write request to the master, which
then has to contact a majority of replicas for the operation
to be successful. Especially in a geo-distributed setting, this
results in comparatively high response latencies.

V. PROOF-OF-CONCEPT

In this section, we introduce our proof-of-concept imple-
mentation of the SMAC system. Furthermore, we provide first
experimental results obtained while testing the prototype.

A. Prototypical Implementation

Internally, the SMAC prototype is realized as an operation-
based distributed peer-to-peer CmRDT storage system. Fig-
ure 2 depicts an overview of the prototype’s architecture.

As a fault tolerant distributed system, SMAC is designed
to be deployed in a cluster. Each node executes at least one
instance of the software written in Java inside a Docker [1]
container. The core entities are the CmRDT Handlers. They
control the life cycle and manipulation of concrete CmRDT
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Fig. 2. SMAC Prototype Architecture.

instances, instantiated from a specific CmRDT implementation
contained in the CmRDT Library. These instances are per-
sisted in the Local CmRDT Store, which resides in memory
in the current implementation. Handler-methods are invoked
through the REST Interface in order to expose Conflict-free
Replicated Data Types and higher level state management
abstractions, e.g., service discovery operations. Currently, only
request-based interaction is implemented, but notifications are
supported by the architecture. Once applied locally, operations
are asynchronously distributed to the other nodes in the
cluster. All communication between processes is handled by
the Asynchronous Communicator. This component ensures
causal delivery of operations, which is required by CmRDTs
as explained in section III. The current prototype employs
direct messaging, but gossip-based communication is possible
as well.

B. Experimental Evaluation

To test our SMAC prototype in a geo-distributed setting, we
provisioned a cluster of three virtual machines in three regions
(Singapore, Frankfurt, Northern California) of the Amazon
Elastic Compute Cloud3. Based on an Ubuntu image with a
Java Runtime Environment, we installed Docker as container
engine and launched containerized SMAC instances on all
three host machines.

This setup was used to perform various tests:
Convergence of CRDTs: To test the correctness of our

CmRDT implementations, we tried to violate convergence
properties by performing large numbers of requests (both,
concurrent and causally dependent) on all hosts. We did not

3https://aws.amazon.com/ec2/

detect any violations with regards to convergence. The cURL4

tool was used to perform automated requests to the REST
interface.

Concurrent Semantics of CRDTs: After ensuring conver-
gence, we deployed test client applications in another set of
container instances accessing the SMAC instances through
their REST interface on every host. We performed predefined
sequences of requests and compared the returned values to
the expected results to verify correct concurrent semantics of
implemented CRDTs. No deviations from the expected results
were detected.

Request Latency: As SMAC uses peer-to-peer asynchronous
background replication and thus returns after committing a
write operation locally, request latency is very low. For com-
parison, we deployed etcd in a similar cluster. First results
indicate that request latency of etcd is significantly larger,
which was expected due to the consensus algorithm employed.

VI. CONCLUSION

In this paper, we introduced and discussed the design of
SMAC, a state management system for container deployments
supporting geo-distribution. The system gives up strong con-
sistency guarantees in favor of availability, fault tolerance and
performance. We showed feasibility by sketching solutions for
common state management use cases as well as application
metadata exchange. Furthermore, we provided a prototypical
implementation of SMAC based on a peer-to-peer CmRDT
storage system developed for that purpose.

As future work, we plan to further evaluate the prototype
by testing it in a large geo-distributed cluster with a realistic
workload. We also aim to perform a thorough experimental
performance comparison of SMAC and etcd. Moreover, we
will add support for additional state management use cases
and implement CRDT specifications not yet supported.
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