BenchFoundry: A Benchmarking Framework for
Cloud Storage Services

David Bermbach!, Jérn Kuhlenkamp', Akon Dey?, Arunmoezhi
Ramachandran®, Alan Fekete?, and Stefan Tai'

! Technische Universitéit Berlin, Berlin, Germany,
Information Systems Engineering Research Group,
{db, jk,st}@ise.tu-berlin.de
2 Awake Networks Inc., Mountain View, CA, USA
akon@awakenetworks.com
3 Tableau Software Inc., Palo Alto, CA, USA
arunmoezhi@gmail.com
4 University of Sydney, Sydney, Australia
alan.fekete@sydney.edu.au

Abstract. Understanding quality of services in general, and of cloud
storage services in particular, is often crucial. Previous proposals to bench-
mark storage services are too restricted to cover the full variety of NoSQL
stores, or else too simplistic to capture properties of use by realistic
applications; they also typically measure only one facet of the complex
tradeoffs between different qualities of service. In this paper, we present
BenchFoundry which is not a benchmark itself but rather is a benchmark-
ing framework that can execute arbitrary application-driven benchmark
workloads in a distributed deployment while measuring multiple qualities
at the same time. BenchFoundry can be used or extended for every kind
of storage service. Specifically, BenchFoundry is the first system where
workload specifications become mere configuration files instead of code. In
our design, we have put special emphasis on ease-of-use and deterministic
repeatability of benchmark runs which is achieved through a trace-based
workload model.

Keywords: Cloud Storage Services, Benchmarking, Quality of Service

1 Introduction

The ability to assess the quality of a service is of high importance in any
service-oriented application architecture. Naturally, a variety of techniques have
been proposed to this end. Many collect basic monitoring data for a specific
quality like performance while some techniques may also include user ratings.
Other techniques focus on a specific objective such as formalization in SLAs
or service composition in business processes. Surprisingly, little attention has
been paid to assessing services by running arbitrary application-driven workloads
in a distributed deployment (which is in some cases required by measurement
approaches, e.g., [4], but also a prerequisite for benchmark scalability) while

measuring multiple qualities at the same time. For this, different application-
driven workloads are necessary to impose different kinds of stress to the service
under consideration. Distribution-aware quality assessments are needed to reveal
otherwise undiscoverable insights. Additionally, each single quality should also be
seen in the context of other, potentially conflicting qualities and their particular
trade-offs.

In this paper, we will focus on cloud storage services. Today, the sheer number
of available cloud storage services and database systems is staggering — in May
2017, nosql-databases.org lists more than 225 NoSQL database projects, a number
that does not even include traditional relational database systems and services
(RDBMS). Selecting a service from this extensive set for an application scenario
requires an understanding of at least two main criteria: (a) functionality, i.e.,
implemented features, data model, etc., and (b) non-functional properties, i.e., the
system qualities provided by the storage service. In this paper, we will focus on
the comparability of cloud storage services in terms of quality. We suggest a novel
benchmarking approach and middleware to provide the necessary insights into
this: For our purposes, a benchmark is a standard workload that is applied to the
system or service under test while a standard set of measurements are collected
in a standard way. For example, the Transaction Processing Council (TPC) has
defined TPC-E representing the workload of a brokerage firm, to evaluate on-line
transaction processing performance by metrics such as transactions-per-second
in relational database systems. The term micro-benchmark is used when the
workloads do not aim to have many features of a realistic application, but rather
they focus on exploring sensitivity to key variables in the workload characteristics.

There is a plethora of previous work, not only in general service quality assess-
ment but especially on database benchmarking. Existing database benchmarking
approaches, however, have severe disadvantages: Some approaches, e.g., TPC
benchmarks or OLTPBench [8], have strict functional and non-functional require-
ments on supported database systems which today are only fulfilled by RDBMS,
e.g., Amazon RDS®. As such, these benchmarks cannot be used to study NoSQL
systems such as Amazon’s DynamoDB® and S37 services. Other approaches, e.g.,
YCSB [7] or YCSB++ [13] are essentially micro-benchmarks [6]. While these are
useful for understanding how tiny changes in workloads affect system quality,
they rarely mimic application workloads realistically. Other criteria where exist-
ing approaches are lacking are aspects like extensibility in terms of workloads,
multi-quality measurements, (geo-)distribution support of the benchmark out of
the box, fine-grained result collection, or ease-of-use. Finally, database bench-
marking typically focuses on the database system rather than the service(s) that
the database system provides — an important detail when it comes to assessing
quality also from a service consumer perspective.

Today, application developers often face a significant challenge: to implement
the benchmark for all storage services of interest from scratch. Addressing this

aws.amazon.com/rds
aws.amazon.com/dynamodb
aws.amazon.com/S3

N o v

real-world concern, we present in this paper the result of designing and actually
implementing ideas from our previous vision paper [3]: BenchFoundry is not just
a benchmark itself, rather it is a benchmarking framework which can execute
arbitrary application-driven benchmark workloads in a distributed deployment,
measure multiple qualities at the same time, and can be used or extended for
every kind of storage service. Specifically, BenchFoundry is the first system in this
domain where workload specifications become mere configuration files instead of
code. In our design, we have put special emphasis on ease-of-use and deterministic
repeatability of benchmark runs which is achieved through a trace-based workload
model.

One contribution of our paper is to capture detailed requirements or desirable
features of benchmarks for cloud services such as storage services; this is in
section 2 along with related work. Another contribution is the BenchFoundry
proposal as a way to meet those requirements; section 3 gives the high-level
overview and section 4 some implementation details. Our final contribution is to
evaluate BenchFoundry (section 5) by showing how some requirements are met
during case-study experiments.

2 Modern Storage Service Benchmarking

In this section, we use our extensive experience in cloud service benchmarking,
e.g., [6], to identify requirements for modern benchmarks in general (and for bench-
marking cloud storage services in particular) including their implementations.
We also discuss existing work in this field.

Traditionally, database benchmarking has mainly been done for performance
evaluation, e.g., through TPC® benchmarks or with YCSB [7]. Over the last
few years, some approaches have been developed for consistency benchmarking
with varying degrees of meaningfulness?, e.g., [2,4,13,16], security impacts on
performance, e.g., [12], as well as an open source project for testing ACID isolation
guarantees'?. However, these are all more or less single quality benchmarks.
Still, measuring more than one quality at the same time is crucial since modern
distributed database systems and services are inherently affected by tradeoffs [1,4]
— being top ranked for one quality is trivial when disregarding the respective other
qualities. To make such tradeoff decisions transparent, modern benchmarking
should always imply multi-quality benchmarking.

(R1) Multi-Quality: Benchmarks should measure all sides of a partic-
ular tradeoff. Exceptions are only permissible where the respective other
qualities are comparable; this should be verified by another benchmark.

Existing benchmark tools often have strict functional and non-functional
requirements on supported storage services, e.g., requiring transactional features

8 tpc.org

 One of the core requirements for benchmarks is to use meaningful and understandable
metrics as well as to offer relevant results to a broad target audience [3,9-11].

10 github.com/ept/hermitage

with strict ACID guarantees [8]. However, it would be preferable to reach a
broader applicability and stronger portability [9,11] by transforming such strict
requirements into measured qualities instead. For instance, transactions could also
be executed in a best-effort way while tracking ACID violations as an additional
quality metric.

(R2) No Assumptions: Benchmarks should make as little assumptions
on the service under test (SUT) as possible. Instead an ideal case should be
identified, deviations tolerated and measured as additional quality metrics
for broad applicability and benchmark portability.

Micro-benchmarks certainly have their benefits for some use cases: they are
a perfect fit for studying how a system reacts to small workload changes or to
test isolated features. They are also easier to implement. However, the relevance
of benchmarking results for a given application depends on the similarity of
application workload and benchmarking workload — the greater the difference
the less relevant are results. Therefore, application-driven benchmarking with
realistic workloads that emulate the given use case as close as possible is typically
preferable over synthetic micro-benchmarks like YCSB.

(R3) Realistic Workloads: Benchmarks should use realistic application-
driven workload that mimick the target application as close as possible.

Modern applications evolve at a yet unheard of pace. As such, modern bench-
marking tools need to be extensible and configurable: They must be able to
support changes in benchmark workloads which reflect new application develop-
ments as well as new storage services which do not exist at the time of designing
the benchmark. Typically, this is achieved through adapter mechanisms and
suitable abstractions, e.g., in [7]. However, these abstractions should be carefully
chosen, e.g., the data model of YCSB is obviously focused on column stores,
which makes it a less than perfect fit for other kinds of storage services. We
believe that a modern benchmark should distinguish a logical and physical data
model in its adapter layer.

(R4) Extensibility: Benchmarks should be extensible and configurable
to account for future application scenarios and new storage services.

Modern applications as well as underlying storage services are inherently
distributed if not even geo-distributed. Consequently, a modern benchmark
should also be designed for distribution and its implementation should build on
measurement clients that can be distributed. Parallelization through distribution
is also important when measuring the scalability of storage services or simply
for benchmarking a service that is already at scale (scalability of the benchmark
tool). Also, some benchmarking approaches heavily rely on distributed execution,
e.g., [4]. However, distributing workloads is a challenging problem, e.g., asserting
that inserts precede updates to the same key.

(R5) Distribution: Benchmarks should be always be distribution-aware
and implementations should come with the necessary coordination logic
for running multiple instances in parallel.

Often, benchmarking tools only report aggregated results, e.g., [7]. While this
is convenient for reporting purposes, this effectively loses a wealth of information:
results such as the saw pattern or the night/day pattern from [4] would never
have been found if only aggregates or even results in the form of a CDF had been
available. Benchmarking tools should, hence, log detailed results at operation
level, i.e., for each operation the outcome, start and end timestamp, retrieved
results for read queries, etc.

(R6) Fine-Grained Results: Benchmarks should always log fine-grained
results, never should they voluntarily delete information.

A key aspect of benchmarking is repeatability, i.e., repeating a benchmark
run several times should yield identical or comparable results. In this regard, all
benchmarking approaches known to the authors have a fundamental problem:
they randomly select keys and generate data at benchmark runtime. While such
an approach has obvious benefits, it also means that repeated executions may
not always yield comparable results or that seemingly comparable results may
in fact have been produced by fundamentally different workloads. When using
such implementations, the only way to counter this effect to a certain degree is
to use long-running experiments, up to several hours or even days, or to carefully
inspect the generated data afterwards (which, however, due to the unavailability
of detailed results is typically not possible). We believe, therefore, that modern
benchmarks should be trace-based, i.e., should be able to replay a given workload
in a fully deterministic way.

(R7) Deterministic Execution: Benchmarks should be able to deter-
mainistically re-execute the exact same workload.

A benchmark should focus on ease-of-use to foster adoption and use. Often,
it is not possible to benchmark all services — relying on results of third parties
may be an option. However, this is only possible in case of widespread use of the
specific benchmark and also depends on the willingness of people to share their
results. Setting up open source systems is often a tedious exercise; we, therefore,
believe that a core design focus of benchmark tools should be on ease-of-use.
Obviously, this requires benchmarks to also come with an implementation as
done for the more recent TPC benchmarks. See also [15] which also emphasizes
ease-of-use.

(R8) Ease-of-use: Benchmarks should have ease-of-use as a core focus.

3 BenchFoundry Design and Architecture

In BenchFoundry, we address each of the requirements from section 2 through a
combination of mechanisms. We will now give an overview of these mechanisms,
see also fig. 1 for a high-level overview of the BenchFoundry architecture.

Fig. 1: High-Level Architecture

3.1 Trace-Based Workload Generation

The first novelty is that we break down the workload generator component into
two components: a trace generator and a scheduler. The trace generator produces
a workload trace which specifies precisely the order of operations and the time
when each operation shall be executed relative to the experiment start. This
trace is generated independently of a specific benchmark run, in fact, it may be
based on real application traces and should be reused frequently. At runtime of
the experiment, the scheduler retrieves entries from the trace and submits them
as independent tasks to a variable-sized thread pool. This happens at the time
specified in the trace — BenchFoundry also tracks scheduling precision.

Following this trace-based approach enables us to have fully deterministic exe-
cutions where all elements of chance are captured within the trace generator (R7).
Beyond repeatability, this trace-based approach also means that BenchFoundry is
the first benchmarking toolkit where workloads become mere configuration files:
Instead of writing a new workload generator, which typically includes aspects like
thread management but also coordination in case of a distributed deployment,
we can add new workloads to BenchFoundry by creating a static configuration
file — manually, based on an existing real application trace, or programmati-
cally through a trace generator. Hence, BenchFoundry is also extensible for new
workloads (parts of R4).

3.2 Runtime Measurements and Offline Analysis

The second novelty is that we separate data collection from data interpretation:
To our knowledge, existing benchmarking tools all calculate metrics at runtime —
obviously, this is not very extensible for new metrics. Furthermore, some mea-
surement approaches require data from various measurement clients (e.g., [4]).
However, this is something to be avoided at runtime so as not to interfere with
precise workload generation. In BenchFoundry, we log detailed results about
every single request that we execute. At the moment, we log the operation ID
(which together with the trace file specifies all details of the operation), start
and end timestamps, returned values for reads, and whether the operation was

successful. After completing the benchmark, these raw results are interpreted
through offline analysis, i.e., we separate data collection from data interpretation.

Based on this information, calculating quality levels at arbitrary levels of
aggregation is possible for a variety of system qualities and metrics, e.g., latency
and throughput, consistency (staleness, ordering guarantees), or violations of
ACID guarantees.

BenchFoundry logs results as detailed as possible (R6) and, thus, provides
information for a variety of qualities and quality metrics (R1). It also aims to
transform non-functional requirements into quality metrics (parts of R2).

3.3 Application-Focused Workload Abstraction

Existing benchmarking tools like YCSB typically use independent operations that
are generated synthetically as a basis of their workload model; TPC benchmarks
usually use transactions comprising multiple operations as their base unit but also
describe the notion of emulated clients. In this regard, TPC benchmarks resemble
real applications more closely: real database-application interactions typically
happen within the scope of a session during which a sequence of transactions is
executed by the storage service.

In BenchFoundry, we make this session explicit in our workload abstraction:
The basic unit of execution is the business process''. A business process describes
a sequence of database-application interactions, i.e., all interactions that would
happen within the scope of a client session for real world applications. All entries
of a business process are executed strictly sequentially, there is never parallelism.

The subunit of a business process is called business transaction. A business
transaction is a logical sequence of business operations that should ideally, if
supported by the storage service, be executed as ACID transactions. However,
in the absence of transactional features, BenchFoundry simply executes these
on a best effort base and tracks ACID violations. This allows us to compare
transactional and non-transactional storage services fairly.

On a logical data schema level, a business operation is an atomic unit that
corresponds to a database query. However, only RDBMS use a normalized data
schema as their physical schema. Other database classes, e.g., column stores,
rely on denormalization where data is kept redundantly to avoid costly queries.
Logical updates may, hence, require several service calls. In BenchFoundry, we
reflect this through the use of database class-specific requests, e.g., a column store
request. In the case of RDBMS, each business operation has exactly one request;
in the case of other database classes, one or more depending on the physical
schema design.

All input files of BenchFoundry are specified on the logical schema level, i.e.,
BenchFoundry does not make assumptions on the physical schema of the storage
service. Instead, we read the logical schema, automatically create a physical
schema recommendation from this, and then create the requests based on the
physical schema and the original query. In case of column stores and key-values

1 Which should not be confused with the process understanding of the BPM community.

stores, we use the approach from [5] for this, for RDBMS we can simply use the
normalized data schema, for other datastore classes schema mappings need to be
determined and imported manually.

Using a workload abstraction that focuses on the behavior of client applica-
tions instead of taking the perspective of the storage service, is a very natural
way of modeling workloads. Therefore, using the concepts of business processes,
transactions, and operations easily allows developers to model application be-
havior which then results in the workload that the database experiences. The
alternative of using independent operations as a base unit may also lead to very
realistic workloads — however, we believe that this is much harder to “get right”.
As such, BenchFoundry (which is not a benchmark itself) does not guarantee
R3 but certainly helps developers achieve it through an easy-to-use workload
abstractions. By differentiating logical and physical schema levels, BenchFoundry
also gets rid of functional requirements on the SUT which helps for a broad
applicability (R2).

3.4 Managed Distribution and Benchmark Phases

BenchFoundry has been designed to be regularly deployed on multiple machines
that together form a BenchFoundry cluster. As basic unit of distribution, we
use business process instances, i.e., when we run BenchFoundry in a distributed
setting, a trace splitter will assign each business process in the trace to a different
BenchFoundry instance. As business processes are by definition independent
(each process includes all interactions within the scope of a client session), these
instances can be executed independently without requiring coordination. For
other aspects which require coordination, BenchFoundry follows a master-slave
approach — however, the master cannot become a bottleneck for the system as
all coordination happens before the actual benchmark experiment run (see also
fig. 2):

During the init phase, the master parses all input files splits the preload
and experiment traces, and configures the SUT (e.g., by creating tables in an
RDBMS). Afterwards, the master forwards the partial traces, the warmup trace,
and configuration details (including physical schema and requests) to all slaves.
When all BenchFoundry instances have been configured, the master signals all
slaves to proceed to the preload phase during which the initial data set is loaded
into the SUT. This is immediately followed by the warmup phase which serves
to warm up database caches.

Once the warmup phase is started, the master proposes a start timestamp
for the experiment phase to all slaves. For this, it uses a 2PC variant: Instead
of denying or accepting the proposal, slaves simply respond with an alternative
(later) start timestamp or the proposed timestamp if it is accepted. The master
then broadcasts a “commit” with the latest returned timestamp. At the agreed
start time, all business processes of the warmup phase are forcibly terminated and
the scheduler for the experiment phase is started. Instances that have completed
their (partial) experiment trace, terminate autonomously and assert that all

results have been logged. The master then proceeds to clean up the SUT, i.e.,
deletes all data that was written during the benchmark, etc.

All in all, BenchFoundry instances only communicate (a) for distribution of
input data, (b) for starting the preload phase, and (c) for agreeing on the start
timestamp of the experiment phase. The trace and the business process-based
workload abstraction already capture all dependencies in the workload which is
why we use them as unit of distribution. Based on this, all other decisions can be
made entirely locally without requiring communication. However, it is, therefore,
necessary to synchronize the clocks of all BenchFoundry machines.

Local Execute preload Execute
configuration and warmup trace experiment trace
Slave(s)
Init ‘ Preload Warmup Experiment Cleanup
Config data, Trigger ||Propose: Accept or ||Commit
physical schema, ||Preload ||Experiment ||alternative ||start
requests, partial ||and start timestamp | [timestamp
traces Warmup | [timestamp -
H
@
Repeat 3
while by
necessary =
3
>
Master

Q

Configure SUT Execute preload Execute
and warmup trace experiment trace

Clean SUT

Fig. 2: Execution Phases and Distributed Coordination

Since the BenchFoundry design avoids coordination where possible and keeps
it outside of the experiment phase when unavoidable, we believe BenchFoundry
to be highly scalable. As such, the system is also a natural fit for distributed or
even geo-distributed deployments (R5). At the same time, using the master-slave
approach together with the phase concept allows us to focus on ease-of-use: All
slaves are only started with a port parameter, the master parses all input files and
forwards it to slaves which self-configure upon receipt. The master also configures
and cleans up the SUT.

4 BenchFoundry Implementation

In this section, we will give an overview of select implementation aspects of our
proof-of-concept prototype. We begin by discussing the input formats, before
describing already implemented trace generators.

4.1 Input Formats

In BenchFoundry, we decided to split the input trace into several files: Especially
long-running benchmarks will have many repetitive entries in the trace, e.g.,
when issuing an operation repeatedly with different parameters. We, hence, use
deduplication both in the input files but also for the in-memory data structures
which follow the same format. Figure 3 gives an overview of the trace input files.

Operation List: This file contains all queries that are used in a given workload
along with a unique ID. In the queries, we use wildcards for the actual parameter
values, e.g., the actual ID value in “SELECT * FROM customer WHERE id=7".
All operations are kept in memory where queries are accessible by their ID. In
the input file, we use SQL to specify the queries.

Parameter List: This file contains parameter sets along with a unique ID
and is also kept in-memory. Using both a parameter ID and an operation ID, an
executable query can be assembled at runtime.

Trace: This file contains information on business processes, their composition,
and their respective start time. As the file will typically be very large, it contains
all entries ordered by time and can, therefore, be read in a streaming mode
with a lookahead buffer. Typically, a scheduler will read at least two seconds
ahead in the trace to have sufficient time for parameter and operation lookups
and, thus, to guarantee on time scheduling. The file format itself demarcates
business processes with BOP/EOP and business transactions within those with
BOT/EOT. The BOP entry also includes the (relative) start timestamp of the
process whereas the BOT entry may include an optional delay before starting
the respective transaction to model think times of emulated users. Operations in
the main trace file are specified as a combination of operation ID, parameter ID,
and custom parameter ID (see below). In a BenchFoundry deployment, we will
typically have one trace each for preload, warmup, and experiment phase.

Custom Parameter List: This file uses the same format as the parameter
list. However, these entries are not used by BenchFoundry directly. Essentially,
custom parameters are parameters that are uninterpretedly passed to the actual
storage service connectors which may (but do not have to) use them. Example
use cases could be consistency levels or the IP address of a specific replica.

Other Files: Beyond the trace files, we also have an input file for the logical
data schema which uses SQL DDL statements and a general properties file.

When creating an experiment trace, only the experiment trace and the
operation list are mandatory. Preload and warmup traces as well as custom
parameters are optional and parameters may already be included in the queries.

4.2 Implemented Workloads

Currently, we have implemented two trace generators for BenchFoundry: The first
generates traces based on the consistency benchmarking approach from [4], i.e.,
it creates a workload that is designed to provoke upper bounds for staleness. The
consbench trace generator is interactively configured with, e.g., the estimated
number of replicas, the desired benchmark duration, and the number of tests. It

Custom

Operations Trace

Params
1: SELECT * BOP;0;0 1: QUORUM
FROM '\ BOT;0 L — | 2a
customer ~1;2;1/ 3.
WHERE id=?;
2:.. EOT

EOP \ Params
Operation: SELECT * FROM customer WHERE id=42; 1: Doe;John

Consistency Level: QUORUM gi 42

Fig. 3: File and In-Memory Representation of Workloads

then automatically decides on an appropriate number of BenchFoundry machines
and builds the corresponding input files. The second trace generator is based
on TPC-C'2, TPC’s current order and inventory management benchmark. The
original TPC-C benchmark describes four transactions; in our BenchFoundry trace
generator, users can configure how they want to assemble these into processes.

To ease the implementation of additional trace generators, we have imple-
mented an easy-to-use builder class where trace generators can simply create new
business processes through method chaining. This builder class then automati-
cally handles parameter and query deduplication while creating the correct input
formats.

5 Evaluation

In this section, we present the results of our evaluation beyond the already
presented proof-of-concept implementation; specifically, we present two things:
First, we discuss how BenchFoundry fulfills the requirements described in section 2.
Second, we take a “systems perspective” and present the results of two experiments
which show that BenchFoundry offers precise scheduling for normal load levels
but is able to sustain a higher throughput level at the cost of accuracy as well as
results showing that BenchFoundry can easily be scaled through distribution.

5.1 Discussion of Requirements in BenchFoundry

In this section, we will briefly discuss how BenchFoundry addresses each of the
requirements for modern storage service benchmarks from section 2.

(R1) Multi-Quality: R1 demands that benchmarks should measure all
sides of a particular tradeoff. In BenchFoundry, we log detailed results about
each operation including start and end timestamp as well as the values actually
written. This allows to determine consistency behavior, performance, availability,

12 tpc.org/tpce

and other qualities. Scalability and elasticity can be measured by varying the
workload intensity.

(R2) No Assumptions: R2 demands that benchmarks should make as little
assumptions on the SUT as possible, instead they should measure deviations
from an ideal state. BenchFoundry only assumes that an SUT should expose
a service interface with operations for data manipulation. The mapping to a
concrete storage service is handled through adapter mechanisms.

(R3) Realistic Workloads: R3 demands that benchmarks should use re-
alistic application-driven workload that mimick the target application as close
as possible. BenchFoundry itself is not a benchmark but rather an execution
environment for arbitrary application-driven benchmarks. For this purpose, Bench-
Foundry offers a partly-open workload model [14] based on business operations,
business transactions, and business processes (which is the most realistic one
for most scenarios) to benchmark designers. It also comes with a scheduler for
closed workload models as used in YCSB [7] and an open workload model is
obviously a special case of the partly-open one for which the respective scheduler
in BenchFoundry can be “misused”. Therefore, we believe that BenchFoundry
offers as much support for R3 as possible without actually designing a benchmark.

(R4) Extensibility: R4 demands that benchmarks should be extensible
and configurable to account for both future application scenarios as well as new
storage services. BenchFoundry is based on an adapter architecture as presented
in figure 1; it also provides a wide variety of mechanisms to fine-tune behavior.
BenchFoundry is also extensible with regards to quality metrics measured as
it separates the benchmark run from data analysis and logs raw measurement
results. We, hence, believe that it is safe to conclude that it fulfills R4.

(R5) Distribution: R5 demands that benchmarks should be designed for
distribution. BenchFoundry uses a workload model that can easily be distributed
and shifts all necessary coordination logic to a pre-benchmark phase.

(R6) Fine-Grained Results: R6 demands that benchmarks should always
log fine-grained results. We could not think of any further measurement results
that could possibly be logged in BenchFoundry. However, extending this would
be straightforward.

(R7) Deterministic Execution: R7 demands that benchmarks should be
able to deterministically re-execute the exact same workload. We address this by
using a trace-based workload model which is fully deterministic.

(R8) Ease-of-use: R8 demands that benchmarks should have ease-of-use as
a core focus. We tried to reach this goal as much as possible, e.g., by automatically
configuring slave machines; if we managed to be successful is to be decided by
BenchFoundry users.

5.2 Experiments

While we believe that BenchFoundry fulfills all the requirements initially identi-
fied, we also wanted to take a “systems perspective” and experimentally verify
whether BenchFoundry is able to scale through distribution (the DISTRIBUTION
experiment) and also to analyze how scheduling precision of workloads, i.e., the

repeatability and determinism of workload execution, is affected by overloading
the machines (the LOAD experiment).

Experiment Setup For our experiment setup, we chose a setup that stresses
BenchFoundry while keeping our SUT lightly loaded. In a regular benchmarking
experiment, this would of course be exactly the other way around. We, therefore,
deployed up to five BenchFoundry instances on Amazon EC2'3 t2.small instances
and a single MariaDB node as SUT on an m4.xlarge instance.

We preloaded the database with a small data set of 4211 rows in 9 tables based
on the TPC-C specification. For our workload, we also used TPC-C as a basis and
designed 4 different business processes with one of the TPC-C transactions each
as business transaction; transactions always contained several business operations.
We configured our trace generator so that it created a trace with a base unit of 2
business processes per second (constant target throughput) that could be scaled
through a load factor. In the following, we will refer to throughput based on the
load factor, e.g., a load factor of 10 means that we ran a workload that scheduled
20 business processes per second, each containing a single business transaction
with several business operations. In each test run, we sustained the respective
throughput for 120 seconds.

As a metric for the scheduling precision and, thus, the ability to precisely
re-execute a given workload, we used the scheduling latency which is defined
as the absolute difference in time between the planned start timestamp of a
business process and its actual start timestamp. We would also like to point out
that collecting data for this metric along with debug-level logging, of course,
negatively affects the scheduling latency, i.e., users can expect values at least as
good in real benchmark runs.

As already mentioned, we ran two experiments: the LOAD experiment and
the DISTRIBUTION experiment. In the LOAD experiment, we used a single
BenchFoundry instance and measured the scheduling latency for different target
throughputs to (a) analyse scheduling precision for normal load levels and (b) to
measure maximum sustainable throughputs on a single instance. We, therefore,
used the load factors 1, 5, 25, 125, and 625. In the DISTRIBUTION experiment,
we used a constant load factor of 50 (a level that, as we will see, was no longer
sustainable on small instances with reasonable scheduling precision) and ran that
workload distributed over one to five BenchFoundry instances.

Results For each experiment, we show a single chart with a single boxplot for
each run. Each boxplot represents a total of 6,000 measurements and shows 5,
25, 50, 75, and 95 percentiles for the corresponding test run.

In the LOAD experiment (see fig. 4a, note the logarithmic scale), we were
not able to reach load factors of 250 or 625. In both cases, we encountered an
out of memory error so that we recommend to always pay special attention
to heap size configuration. In all other experiment runs, we saw the expected

13 aws.amazon.com/ec2

104 450

=
°
w
1
w
I
=

[
w
o
1=

scheduling latency [ms]

=
o
™

g latel

N N

o u

o o

0 H H
10 1 5 25 125 0 2
load factor #nodes

(a) LOAD Experiment (b) DISTRIBUTION Experiment

S
i
|
schedulin
R
g 8 8
1]
I
H{IH

Fig. 4: Experiment Results

behavior: low scheduling latencies for normal load levels that increased with
higher sustained throughputs. At a load level of 125, the (small) instance was
effectively overloaded.

In the DISTRIBUTION experiment (see fig. 4b), we also saw the expected
results: BenchFoundry scales almost linearly with the number of nodes, i.e., in-
creasing the number of nodes improves scheduling precision for constant workloads.
Since BenchFoundry instances are completely independent during benchmark
runs, doubling the load while using twice the number of machines cannot affect
scheduling precision negatively, thus, also guaranteeing linear scalability in this
regard.

All in all, BenchFoundry is — as expected — able to offer a high scheduling
precision and, thus, repeatability for workloads at “normal” load levels, i.e., when
the machine is not fully loaded, and experiments indicate that it scales well.

6 Conclusion

In this paper, we have presented BenchFoundry, a benchmarking framework that
can execute arbitrary application-driven workloads in a distributed deployment
while measuring multiple system qualities of a cloud storage service. To our
knowledge, BenchFoundry is the first framework that uses trace-based workloads
where workloads become mere configuration files for this purpose. Beyond this
convenience aspect, trace-based workloads also guarantee precise repeatability of
benchmark runs.

We started by identifying requirements for modern storage benchmarks. Based
on this, we presented the design and architecture of BenchFoundry before covering
implementation details and evaluating our approach. In future work, we plan to
implement additional trace generators and database connectors.

Acknowledgements

We would like to thank Sherif Sakr for his contributions during the early stages
of the project, Daniel Wenzel for his support during some of our experiments,
and Amazon Web Services for providing free access to their services.

References

10.

11.

12.

13.

14.

15.

16.

Abadi, D.: Consistency tradeoffs in modern distributed database system design:
Cap is only part of the story. IEEE Computer 45(2), 37-42 (Feb 2012)

. Anderson, E.; Li, X., Shah, M.A., Tucek, J., Wylie, J.J.: What consistency does

your key-value store actually provide? In: Proc. of HOTDEP. USENIX (2010)
Bermbach, D., Kuhlenkamp, J., Dey, A., Sakr, S., Nambiar, R.: Towards an Exten-
sible Middleware for Database Benchmarking. In: TPCTC 2014. Springer (2014)
Bermbach, D.: Benchmarking Eventually Consistent Distributed Storage Systems.
Ph.D. thesis, Karlsruhe Institute of Technology (2014)

Bermbach, D., Mueller, S., Eberhardt, J., Tai, S.: Informed schema design for
column store-based database services. In: Proc. of SOCA. IEEE (2015)
Bermbach, D., Wittern, E., Tai, S.: Cloud Service Benchmarking: Measuring Quality
of Cloud Services from a Client Perspective. Springer (2017)

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proc. of SOCC. ACM (2010)

Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: Oltp-bench: An extensible
testbed for benchmarking relational databases. Proc. of VLDB

Folkerts, E., Alexandrov, A., Sachs, K., Tosup, A., Markl, V., Tosun, C.: Bench-
marking in the cloud: What it should, can, and cannot be. In: Proc. of TPCTC
Huppler, K.: The art of building a good benchmark. In: Proc. of TPCTC. Springer
(2009)

v. Kistowski, J., Arnold, J.A., Huppler, K., Lange, K.D., Henning, J.L., Cao, P.:
How to build a benchmark. In: Proc. of ICPE (2015)

Miiller, S., Bermbach, D., Tai, S., Pallas, F.: Benchmarking the performance impact
of transport layer security in cloud database systems. In: Proc. of IC2E. IEEE
(2014)

Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., Lépez, J., Gibson, G., Fuchs,
A., Rinaldi, B.: Ycsb++: Benchmarking and performance debugging advanced
features in scalable table stores. In: Proc. of SOCC. ACM (2011)

Schroeder, B., Wierman, A., Harchol-Balter, M.: Open versus closed: A cautionary
tale. In: Proceedings of NSDI. vol. 6, pp. 18-18 (2006)

Seybold, D., Domaschka, J.: A cloud-centric survey on distributed database evalua-
tion. In: Proc. of ADBIS (2017)

Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data consistency properties and
the trade-offs in commercial cloud storages: the consumers’ perspective. In: Proc.
of CIDR (2011)

