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Abstract. State-of-the-art applications are typically deployed on top
of cloud services which offer the illusion of infinite resources, elastic
scalability, and a simple pay-per-use billing model. While this is very
convenient for developers, it also comes with relatively high access latency
for end users. Future application domains such as the Internet of Things,
autonomous driving, or future 5G mobile apps, however, require low
latency access which is typically achieved by moving computation towards
the edge of the network. This natural extension of the cloud towards
the edge is typically referred to as Fog Computing and has lately found
a lot of attention. However, Fog Computing as a deployment platform
has not yet found widespread adoption; this, we believe, could be helped
through a consistent use of the service-oriented computing paradigm for
fog infrastructure services. Based on this motivation, this paper describes
the concept of Fog Computing in detail, discusses the main obstacles for
Fog Computing adoption, and derives open research challenges.
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1 Introduction

Today’s state-of-the-art applications are typically deployed on top of cloud
services, thus, leveraging cost benefits, ease-of-use, elastic scalability, and the
illusion of infinite resources [12]. While cloud services come with these obvious
benefits, they also have a major disadvantage: cloud data centers are centralized
and, thus, typically far from the end user resulting in high access latencies. This is
sufficient for many application domains such as enterprise or web applications but
not for more modern application domains such as autonomous driving, Internet
of Things (IoT)-based platforms, or 5G mobile applications. Therefore, these
applications are typically deployed on edge devices. However, while such edge
devices offer low access latencies due to their physical proximity to end users,



they also come with limited resources and are subject to availability problems.
In this situation, an obvious approach is to use both cloud services and edge

nodes at the same time to achieve low latency while having access to scalable,
infinite resources. This paradigm, which has recently emerged as a natural
extension of Cloud Computing, is typically referred to as Fog Computing [13,
4]. Beyond the benefits already discussed, Fog Computing also promises better
privacy to end users: While current, cloud applications collect personal data need
in a central place, future Fog applications can keep detailed personal data at the
edge, transferring only aggregated or properly anonymized data to the cloud.

These obvious advantages of Fog Computing and the public attention it
created notwithstanding, there has so far been surprisingly little adoption of the
paradigm for actual applications. We believe that there are several reasons for
this, chief among which we see a lack of edge service offerings: managing edge
nodes manually is a gruesome task and requires massive upfront investments – the
exact opposite of cloud services with their convenience focus and pay-as-you-go
model. Also, it is still not completely clear what Fog Computing actually is.

This paper aims to shed some light on Fog Computing and its role in service-
oriented computing (SOC). To this aim, we firstly provide a definition of Fog
Computing and the involved concepts relevant to SOC. Secondly, we identify the
main obstacles for widespread fog adoption and describe a number of fundamental
research challenges. For this reason, this paper should, thus, be seen as a call to
action and as an overview of challenges that we as researchers should tackle.

This paper is structured as follows: In section 2, we give an overview of
state-of-the-art Fog Computing (along with its competing definitions as well
as its benefits and opportunities). Afterwards, in section 3, we identify and
discuss obstacles for widespread fog adoption. In section 4, we describe research
challenges that result from these obstacles before concluding.

2 From Cloud to Fog Computing

Fog computing has been initially introduced in the telecommunication sector [4]
when researchers and practitioners realized how the role of the final users changed
from consumers of information to prosumers (producers and consumers at the
same time). In fact, the original paradigm on which the Web is based assumes
that the core of the network is in charge of providing information that will be
consumed at the edge. Prosumers with mobile devices or IoT sensors, however,
generate immense data quantities at the edge of the network.

So, what precisely is Fog Computing and how can it be distinguished from
Edge Computing? Edge Computing is exclusively about computation at the edge
of the network without any notion of cloud services. Depending on the source,
Fog Computing is either the same as Edge Computing [20] or is defined as the
amalgam of cloud, edge, and any intermediary nodes in between (this could
be small- to medium-sized data centers within the core network of the network
provider) [21]. In this paper, we take the latter perspective. See also fig. 1 for a
high-level deployment overview of Fog Computing.
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Fig. 1. Deployment Overview of Fog Computing
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Fig. 2. Overview of Roles in Fog Computing

To realize its full potential, Fog Computing must be more than creating a data
center in the box, i.e., Cloudlets [19], to bring the cloud closer to data producers.
Instead, Fog Computing must be seen as a “resource layer that fits between
the edge devices and the cloud data centers, with features that may resemble
either.” [25]. As also pointed out by the OpenFog Consortium [13], the goal of
Fog Computing is to provide a set of methods and tools to create a continuum
between edge and cloud. For this, Fog Computing technologies especially need to
enable fluid data movement between cloud services and edge, in both directions,
while satisfying application constraints in terms of quality of service (QoS). Such
data movement may also be accompanied by movement of computation – both
in the same way and in a complimentary fashion compared to data movement.

With the advent of Fog Computing, applications based on this paradigm
can exploit the advantages of both the edge and cloud environments. With
specifically tailored frameworks, e.g., [17], developers can leave it to the Fog
Computing layer to automatically handle data and computation placement. Based
on such dynamic data and computation movement, applications can provide new
functionality or new QoS levels (e.g., significantly lower latency) and use novel
ways for dynamically balancing tradeoffs. The lack of such capabilities has so far
hindered the emergence of technologies such as autonomous and interconnected
driving, large-scale IoT, etc., which should significantly profit from fog adoption.

While Cloud Computing is largely centered around a service concept, this
is not (yet) the case for the edge as we will also discuss in the next sections.
However, we firmly believe that the SOC paradigm might prove valuable for
widespread fog adoption. In this context, we envision the following roles (see also
fig. 2): Already today, cloud service providers offer access to cloud infrastructure



services. Edge service providers may do the same for edge resources. Fog service
providers, in contrast, offer service-based access to fog infrastructure resources
– in this capacity, fog service providers may act as resellers. Alternatively, two
or more of these roles may be held by the same organization. Finally, Fog
application providers rent resources through fog infrastructure services to offer
their application to clients. We explicitly use the broad term “client” as this may
include IoT devices, mobile phones, or any other end user.

However, there are several obstacles and yet unsolved research challenges that
need to be faced in order to actually pave the way for a broad adoption of Fog
Computing. In literature, some other papers already made the attempt to identify
these challenges. For instance, even if it does not mention Fog Computing, Dı́az
et al. [6] analyses the challenges when considering the integration of IoT and
cloud services, thus, in a scenario close to Fog Computing. Yet, [5] proposes a Fog
Computing definition close to ours and also identifies some possible applications
as well as research challenges mainly concerning the infrastructural level, while
in this paper we are taking a broader perspective also considering the application
level. Finally, in [20], even if mainly focused on the Edge Computing, a list of
challenges are introduced with more emphasis on the programming models.

As already mentioned, the goal of the paper is to consider Fog Computing as
an environment in which both cloud and edge resources are used as application
service deployment environments. Obstacles to the adoption of Fog Computing,
and the related research challenges arising when trying to overcome to those
obstacles, necessarily include the design, deployment, and management of complex
and distributed systems, as discussed in the following sections.

3 The Main Obstacles for Adoption of Fog Computing

Broadly, obstacles for a wide adoption of Fog Computing can be categorized as
inherent, e.g., available technology or physical constraints, and external obstacles,
e.g., privacy legislation. In this section, we will give an overview of both.

3.1 Inherent Obstacles

As inherent obstacles we see those that result from the very idea of using fog
resources. Specifically, these can be technical constraints such as a given limit of
computational power, logical constraints such as having tradeoffs in distributed
systems, or simply market constraints such as the fact that there are currently
no managed edge services.

O1: No Edge Services While the cloud is conveniently usable with its service-
based consumption model, there are currently no edge infrastructure services
where compute or storage capacity could be provisioned on-demand. We believe
that managed edge services are bound to enter the market sooner or later;
possibly even as fog services in cooperation of cloud providers and network
carriers. Currently, Amazon is taking first steps in that direction through their



Greengrass “service”5 which provides software for edge devices. However, since
there is currently no way to really “rent” on-demand edge capacity, this means
that fog application providers currently need to build, manage, and run their
own physical edge “boxes” including cloud integration.

O2: Lack of Standardized Hardware While there are some ready-to-use,
off-the-shelf edge “boxes”, these come in a variety of flavors, e.g., regarding
compute power. Alternatively, Raspberry Pis, BeagleBoards, or custom solutions
can be used. This leads to a broad heterogeneity of edge node hardware which
has two effects: First, software stacks need to be adapted or may not even run
everywhere. Systems that can actually run everywhere are unlikely to fully tap the
potential of the respective hardware resources. Second, application architectures
need to be able to deal with such diverse resource capacities. This requires highly
modularized applications that can deliver some or all service features depending
on the nodes where they are running.

O3: Management Effort Since Fog Computing is mainly about bringing data
and computation closer to end users, dense fog deployments will result in very
high numbers of fog nodes. These all need to be managed, e.g., when scaling,
installing updates, or updating configurations. As there is currently no managed
fog infrastructure service, this management effort is left with application providers.
In comparison small on-premise data centers, this requires immense effort.

O4: Managing QoS Complexity of systems typically increases with the number
of nodes in the system and their geographical distribution. This is due to issues and
faults – ranging from simple ones such as network latencies, message reordering,
or message loss to complicated faults such as network partitioning or byzantine
failures. Usually, systems can cope with these issues but they still affect QoS and
their tradeoffs. In large-scale geo-distributed systems, all these issues become
more pronounced and faults happen more often – simply based on probabilities
and the increased number of distributed nodes.

At the same time, fog application domains such as IoT or autonomous driving
actually have stronger quality requirements on infrastructure services as the
potential impact of “things going wrong” is much more severe and affects the
physical world. E.g., faults in a social network may lose a private message;
identical faults could result in injuries and deaths if they affect safety-critical
functionality of autonomous cars.

O5: No Network-Transparency Distributed systems research has always
tried to hide distribution, i.e., that applications will run as if they were running
on a single machine. Over the years, more and more of these transparencies
needed to be sacrificed in favor of other QoS goals. What has still remained
hidden so far is the network layout; e.g, cloud services expose some basic high-
level information on their setup and distribution (e.g., availability zones and

5 aws.amazon.com/greengrass



regions in AWS) and heavily rely on network virtualization. However, in Fog
Computing, the interconnection of nodes on a logical level can no longer be
done in arbitrary ways as the underlying networks are, in fact, more or less
hierarchical; e.g., two geographically near edge nodes may be connected directly,
on the next higher hierarchy level, at the Internet backbone level or anywhere
in between. In geo-distribution, this results in edge-to-edge latencies that are
magnitudes apart. Therefore, fog application services can no longer be based on
high-level abstractions describing distance notions (e.g., an AWS region). Instead,
they need to be aware of actual network topologies unless they can cope with
unexplainable performance variance across nodes. For manageability reasons, this
calls for the introduction of novel, more fine-grained topology abstractions that
can be handled inside application services.

3.2 External Obstacles

Beyond the inherent obstacles already discussed, there are also influence factors
resulting from external entities such as government agencies or attackers.

O6: Physical Security Traditional data centers can employ arbitrarily complex
measures for physical access control including but not limited to onsite security
staff. Typically, this is subject to audit and certification to assert that their
physical security measures are up to par. For fog nodes widely distributed across
a basically hostile environment, this is impossible. Here, physical security may
mean to attach an edge box to the top of a street light’s pole (instead of at eye
level) or surrounding it with a fire-resistant coating to counter vandalism. What
is less obvious, though, is that potential attackers gain a physical attack vector
into a software system which enables an entire set of so far theoretic attacks. Even
though there are existing approaches to comparable problems from other fields
– e.g., for tamper-proofing smart energy meters or for protecting modern cars
against software manipulations – these are typically addressing highly specific
risks that are well-known in advance. Also, such approaches have only been used
in specialized embedded systems yet. They can, thus, not be directly applied to
heterogeneous, multi-purpose fog nodes. Nonetheless, they might provide valuable
inspiration and direction for addressing physical security in Fog Computing; e.g,
one could design fog nodes so that they can detect tampering to then shut down
the node, move and wipe all data, and notify the authorities. Application services,
in turn, need to be able to cope with such behavior.

O7: Legal and Regulatory Requirements In many application domains,
e.g., in health care, there are legal and regulatory requirements that mandate
data to be held in certain physical locations. Also, storage and processing facilities
must demonstrably meet certain requirements. While cloud data centers can
be certified if they exist in the respective region, this seems impractical for
edge nodes. Furthermore, data privacy regulation such as the EU’s GDPR [9]
also include aspects like transparency, i.e., the data subjects’ right to know
where their personal data is stored. In liquid fog-based applications, this is



challenging to prove as the application may not even know the data location due
to virtualization.

4 Open Research Challenges in Fog Computing
While we as a research community cannot start a managed edge infrastructure
service, we can support fog adoption through research efforts on the research
challenges presented in this section. Even though there are interdependencies
between these challenges, they can be broadly categorized regarding the role
that they mainly affect: fog infrastructure service providers or fog application
providers. In a third group are management challenges such as failure handling
or security and privac aspectsy which fog application providers are primarily but
not exclusively responsible for. In this section, we will present this non-conclusive
list of main challenges following the above-mentioned ordering structure; where
possible we also point out possible avenues for addressing them.

4.1 Fog Service Providers

While our research is unlikely to directly result in fog infrastructure services,
there are still a number of open research challenges that potential fog service
providers need to face once they decide to enter the market.

RC1: New Abstractions One of the main goals of using a SOC model is
to hide implementation or runtime details. In the case of fog resources, geo-
distribution, physical locations, and sometimes the node type actually matter.
Still, fog application providers seem ill equipped to deal with services that
expose individual edge locations and capacities. What we need is some middle
ground that exposes enough details on distribution and physical locations so that
applications can work with it but are not overwhelmed by it. We believe that
the event-driven programming model of typical (serverless) Function as a Service
(FaaS) [18] offerings naturally lends itself to this: Applications can use policies
to define properties on various levels, e.g., for the case of location, based on
density for a given region, everywhere within a given region, or based on concrete
coordinates, which are then used by the fog FaaS offering to deploy functions
accordingly. Of course, other programming models are also an option – however,
a serverless approach seems like an easy-to-use abstraction that allows control
over deployments while not forcing unnecessary details on application developers.

RC2: Capacity Management One of the main properties of cloud services
is the illusion of infinite resources [12]; for edge nodes, in contrast, upholding
this illusion becomes impossible. Essentially, in an edge node there is a limited
set of resources that is available to fog service consumers. In the cloud, resource
pooling across a large customer base and inside gigantic data centers helps cloud
providers even out natural demand variability. In Edge Computing, the limited
capacity of nodes does not allow this: edge nodes will alternate between states of
idleness and periods with more demand than they can handle. However, offloading
processing and data to adjacent nodes or intermediary nodes is bound to impact
QoS. This leads to the following three main questions for fog service providers:



1. How shall scarce capacity be distributed across applications in periods of
high demand?

2. Shall fog service providers deny requests that cannot be fulfilled or shall they
fulfill them partially, e.g., on other nodes, resulting in poorer QoS behavior?

3. How shall fog service providers size their edge and intermediary nodes if
demand is unknown before deployment?

We believe that auctioning-based approaches (comparable to virtual machine
spot markets [14]) can help us tackle the first two questions. E.g., an application
could submit different price bids for specific groups of nodes (e.g., a specific edge
node compared to an intermediary node with slightly higher latencies). Whenever
demand exceeds capacity, this allows fog service providers to auction off free
capacity to the highest paying bidder. If bids reflect individual utilities, this
results in an (economically) optimal distribution of capacity where optimizations
can be decided locally. Of course, our community could develop more complex
mechanisms, e.g., distributions based on QoS requirements etc.

Regarding the third question, we believe that fog service providers should
strive to design modular edge nodes where additional capacity can be added or
removed incrementally, e.g., a rack of Raspberry Pis.

4.2 Fog Application Providers

There is a number of key differences between cloud-native and fog-native ap-
plications. Beyond dealing with abstractions offered by (potential) fog service
providers, application services need to be able to run in a widely distributed
setup (resulting in new modularization challenges), must be able to dynamically
adapt to new environments (meaning a unique “fluidity” challenge), and must
consider – on an architectural level – how to integrate various fog nodes ranging
from high performance cloud machines to Raspberry Pi-based edge nodes.

RC3: Modularization State-of-the-art modularization of applications typically
follows a microservice-based approach [11] where each microservice represents
a vertical cut through the application stack. This means that a microservice
will usually have its own storage layer and may even use its own technology
stack. This modularization is largely driven by organizational decisions, i.e., a
company organized into small DevOps teams will assign part of the functionality
to each of the teams who will then be responsible for developing and running
that microservice. Service-oriented architectures, in contrast, were mainly driven
by technical design goals such as reusability, less by organizational factors. Now,
in future fog applications, it may make sense to still follow a microservice-based
approach (or it may not – depending on the organizational structure of the
developer group), but within a microservice not all parts of the stack may run on
all nodes, also considering that replication in the deployment suddenly becomes
widely distributed. What we envision is that the vertical cuts of microservices
are cut horizontally into smaller slices that can be distributed. For instance, an
application service may decide to keep some basic presentation and application



logic plus a caching layer at the edge and persistently store data on cloud nodes.
For this, we need further research on how to slice microservices into even smaller
pieces that can be replicated, shuffled around, and distributed widely.

RC4: Fluidity Novel fog applications will have to be designed in a way that
openly embraces a notion of fluidity: application modules will be interrupted
frequently, will move between fog nodes, and maybe cloned at any time for such
reasons as limited edge capacity, moving client devices, cost optimizations, or
changing QoS requirements. Part of fluidity is also the ability to deal with varying
resource capacity in nodes, e.g., when moving from a high performance cloud node
to a small edge node. A convenient way to address this fluidity challenge is to
strictly separate stateful and stateless components – an approach also (originally)
taken with containers such as Docker [7]. The same paradigm can also be found in
serverless FaaS deployments where applications are broken down into short-lived,
stateless tasks that interact with a stateful storage tier. Research should focus
on application designs that can cope with such degrees of fluidity.

4.3 Cross-Cutting Concerns

Failure handling primarily falls into the domain of application developers; however,
depending on the actions of prospective fog service providers, failure handling
activities can be severely affected. E.g., applications that use bare resources will
have to employ fundamentally different mechanisms than applications that run
on top a fog-based FaaS offering. Finally, as in Cloud Computing [10], security
and privacy aspects are obvious candidates for further research challenges.

RC5: Graceful Degradation and Fault-Tolerance Fault-tolerance is al-
ready challenging in the cloud – fog services with more nodes, wider distribution,
and more complex and dynamic interdependencies between components make
this even harder. At the same time, fog application domains such as autonomous
driving or IoT tend to have more stringent QoS requirements as unhandled fail-
ures are bound to have physical effects. Based on this, it is of utmost importance
to handle and hide failures where possible and to support graceful degradation,
e.g., in the form of a “safe mode”, when not. How this can be achieved in fog
applications or infrastructure services is still unclear. Suitable safeguards that
monitor necessary requirements and notify in case of violations might be alter-
natives as well as compensation and data interpolation mechanisms. E.g., in
autonomous driving, a fog storage service should aim to underestimate distances
between cars when forced to in the presence of missing data as an overestimating
interpolation may result in accidents. Here, research should work on identifying
failure detectors or use case-driven compensation mechanisms.

RC6: Benchmarking and Testing Realistic benchmarking [3] and testing are
already challenging for cloud services: Both can easily be executed under controlled
conditions (much work in benchmarking is dedicated to creating controlled
environments) whereas interesting behavior, e.g., [1, 16, 2] may only be observable



in realistic conditions, i.e., at scale and in a regular deployment while running a
production workload. For fog-based applications, additional influence factors like
heterogeneous hardware (potentially under control by different legal entities), wide
geo-distribution, and only occasionally (re)occurring failure situations (possibly
resulting from unforeseeable events in the “physical world”) are added to the
melee of challenges. In short, it becomes completely impossible to accurately
emulate a production system for testing purposes since the cost of running such a
setup is prohibitive and a second set of comparable resources may not even exist.
Future research in this area should focus more on continuous benchmarking [24]
and testing where both are executed during a build process: starting from a
small isolated test setup to test basic QoS and functionality, gradually rolling
out the software to the target environment. In short, the differences between
benchmarking and testing on the one side and monitoring on the other side
will gradually be blurring. Research should try to identify how this can be done
in practice without impairing production systems. Furthermore, more research
needs to be directed towards benchmarking fault-tolerance and related qualities.

RC7: Attack-Agnostic Services Fog Computing also raises a number of se-
curity challenges, mainly how to provide appropriate security in an essentially
hostile environment. Besides technical mechanisms, this might also require novel
views to the weighing between acceptable risks and the costs of countermeasures.
Especially with regard to the physical attack vectors omnipresent in the context
of edge nodes, it seems highly worthwhile to put more effort on coping with
attacks instead of avoiding them. We, thus, see the design of “attack-agnostic”
services that accept certain attacks as unpreventable and implement measures for
detecting and reacting to them (particularly to safeguard data) as a promising
strand of research. Integrating such approaches into established security ap-
proaches for distributed service systems is another research question. Finally, the
limited capabilities of edge nodes may also restrict the applicability of security
mechanisms widely adopted today: Encryption overheads – all too often already
mistaken as virtually nonexistent [15] – may suddenly become restricting factors
in the context of constrained edge nodes and. Also, the use of well-established
concepts for access management and enforcement may prove inappropriate due to
the common unreachability of centralized components, calling for novel schemes
tailored to the specific givens in fog scenarios [23].

RC8: Compliance with Privacy Legislation For privacy, Fog Computing
provides both opportunities and challenges. Fulfilling data privacy requirements
that give data subjects the right to know and to control where their personal
data resides is particularly challenging in such a widely distributed, ever-changing
network. Other regulations, e.g., regarding auditability or the physical placement
of data are also difficult to address – possibly through information flow control,
e.g., [22], if it can be implemented with little overhead.

On the other hand, Fog Computing also provides a number of opportunities,
e.g., data could be aggregated or anonymized on edge nodes before forwarding
it to a “central” cloud service, i.e., sensitive, detailed data may not even leave



the direct vicinity of the data subject [8]. Similarly, the processing of sensitive
personal data may be relocated away from centralized data lakes to the place
of data collection, serving privacy goals like data minimization and purpose
limitation.

5 Conclusion

While Cloud Computing can today be considered well established, modern
application domains such as IoT, autonomous driving, or even mobile applications
trying to tap the full potential of future 5G networks require an extension of
the cloud towards the edge, thus, naturally leading to the new Fog Computing
paradigm. In Fog Computing, application services run on both edge nodes
(with low latency access but very limited resource capabilities) and in the cloud
(with higher access latency but practically unlimited resources) as well as on
possible intermediary nodes. Fog Computing as a new paradigm is a yet virtually
unexplored field that offers a number of open research challenges.

In this paper, we started by describing what Fog Computing actually is –
also in comparison to Edge Computing and Cloud Computing. Afterwards, we
described the main obstacles for widespread fog adoption, distinguishing inherent
and external challenges. An example for inherent challenges is the current lack of
an edge service model which leads to a “build your own infrastructure” trend
with all its undesirable implications; examples for external challenges are physical
security or regulations. Building on these identified obstacles, we then described
open research questions that arise for either (potential) fog service providers or
fog applications running on top of such services. We also identified a number of
cross-cutting concerns which fall into the domain of fog service consumers and
application providers but are strongly affected by fog service provider actions,
e.g., fault-tolerance, security, privacy, but also benchmarking and testing.

All in all, this paper aims to identify a research agenda in Fog Computing
where we, as service-oriented computing researchers, as well as other research
communities can contribute. Where feasible, we also pointed out specific directions
that we believe might prove useful for overcoming the named obstacles or for
addressing the resulting research questions.
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