
Supporting the Evaluation of Fog-based IoT Applications During
the Design Phase

Jonathan Hasenburg
TU Berlin

Mobile Cloud Computing
hasenburg@tu-berlin.de

Sebastian Werner
TU Berlin

Information Systems Engineering
werner@tu-berlin.de

David Bermbach
TU Berlin

Mobile Cloud Computing
david.bermbach@tu-berlin.de

ABSTRACT
Fog application design is complex as it comprises not only the ap-
plication architecture, but also the runtime infrastructure, and the
deployment mapping from application modules to infrastructure
machines. For each of these aspects, there is a variety of design
options that all affect quality of service and cost of the resulting ap-
plication. In this paper, we propose an approach for evaluating fog-
based IoT applications already during an early design phase. Our
approach relies on modeling and simulation to provide estimates
for quality of service and cost so that developers can interactively
choose a good application design.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; • Computer systems organization
→ n-tier architectures; Sensors and actuators;

KEYWORDS
Fog Computing, Application Design, Simulation, IoT

ACM Reference Format:
Jonathan Hasenburg, Sebastian Werner, and David Bermbach. 2018. Sup-
porting the Evaluation of Fog-based IoT Applications During the Design
Phase. In 5th Workshop on Middleware and Applications for the Internet of
Things (M4IoT’18), December 10–11, 2018, Rennes, France. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3286719.3286720

1 INTRODUCTION
The widespread deployment of connected devices in the Internet
of Things (IoT) has substantially increased the amount of data
available to developers. Today’s IoT applications can make use of
this data to enable more sophisticated application scenarios.

When designing an IoT application, the current go-to approach
is collecting data at the edge, transmitting it to the cloud for pro-
cessing, and sending the processed results back to the edge, e.g.,
to switch on a light in the presence of movement in a smart home
scenario [15]. Due to its simplicity, this approach is used by many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
M4IoT’18, December 10–11, 2018, Rennes, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6118-7/18/12. . . $15.00
https://doi.org/10.1145/3286719.3286720

services, e.g., AWS IoT1 or the Azure IoT Hub2. However, disadvan-
tages include long response times, unnecessary data transmissions
and the risk of exposing sensitive data to third parties [2].

Performing some tasks already at the edge, as done by AWS
Greengrass3, can reduce bandwidth consumption and enables the
edge to keep operating in the presence of network partitions. How-
ever, this approach is limited by available processing capabilities
as edge devices are often not powerful enough to run compute-
intensive tasks.

An obvious solution to this problem is to leverage the compute
power provided by stronger machines such as cloudlets [16, 17]
within the core network [2]. This execution environment is com-
monly referred to as fog [2, 3] and consists of edge devices, machines
within the core network, and the cloud.

When designing an application for the fog, developers typically
have to consider the application architecture, the runtime infras-
tructure and the deployment mapping from application modules to
infrastructure machines. For each of these three aspects, a number
of design options exist and each option can be combined in various
ways with options from the other aspects. This leads to a multitude
of possible application design options.

Deciding on a particular design should be based on a careful
evaluation of effects on quality of service (QoS) and cost. While
such an evaluation tends to be complicated, we believe that it is
worthwhile as the added benefits of efficiently using the fog can
bring significant improvements to IoT applications. Within this
paper, we aim to support such evaluations to help developers choose
an design option. Therefore, we make the following contributions:

• We propose an approach for the evaluation of fog-based IoT
applications that is applicable during the design phase.

• We present a proof of concept implementation of our ap-
proach called FogExplorer.

• Wedemonstrate how our approach can be used in an example
scenario.

The remainder of this paper is structured as follows: In section
2, we introduce our approach. Then, we present a proof of concept
implementation of our approach and demonstrate how it can be
used in an example scenario (section 3). Finally, we discuss related
work in section 4 before concluding in section 5.

2 APPROACH
When designing a fog-based IoT application, various options for
the runtime infrastructure, application architecture, and possible
deployment mappings lead to a multitude of possible designs. With
1aws.amazon.com/iot/
2azure.microsoft.com/en-us/services/iot-hub/
3aws.amazon.com/greengrass/

https://doi.org/10.1145/3286719.3286720
https://doi.org/10.1145/3286719.3286720
aws.amazon.com/iot/
azure.microsoft.com/en-us/services/iot-hub/
aws.amazon.com/greengrass/

M4IoT’18, December 10–11, 2018, Rennes, France J. Hasenburg et al.

our approach, we aim to provide developers with the means to
evaluate these designs with the help of an iterative modeling and
simulation process (section 2.1). Based on a simplified infrastruc-
ture model (section 2.2) and application model (section 2.3), we
use simulations to interactively give QoS and cost estimates for
changing deployment mappings (section 2.4). Such estimates allow
developers to better understand implications of their design choices
and balance QoS and cost.

2.1 Modeling and Simulation Process
Figure 1 shows the iterative modeling and simulation process: a
developer first creates a high level infrastructure model (1a) and ap-
plication model (1b). The infrastructure model describes machines
and their interconnections; the application model defines appli-
cation modules and all inter-module data streams. Note, that no
implementation is required for the simulation process as applica-
tion modules only contain very high level information on the later
to be implemented software components of an application.

Update placements

Simulate effects on
QoS and cost

Derive
recommendations

performed together
Create/Update

infrastructure model
Create/Update

application model

1a 1b

2

3

4

Figure 1: The Iterative Modeling and Simulation Process

Based on a first infrastructure and application model, developers
can then start to place application modules on infrastructure ma-
chines (2) to create a deployment mapping. Every placement update
affects QoS as well as cost and should, hence, trigger a new simula-
tion run (3). By studying these effects, recommendations on how
to optimize placements and the infrastructure or application model
can be derived (4). This information allows developers to iteratively
improve their design and compare different design solutions.

2.2 Infrastructure Model
When designing a system, developers usually have only a vague idea
about their runtime infrastructure. Therefore, we cannot assume
to have detailed information or benchmarking results on available
performance. Thus, the model has to support a high level, abstract
description of infrastructure which is accomplished by focusing
on six properties: three for machines, and three for connections
between machines.

For every machine, the property performanceIndicator is a rough
estimate on the performance compared to a reference machine4, i.e.,
4A developer can chose any machine of the runtime infrastructure to be the reference
machine, e.g., a Raspberry Pi or a specific AWS EC2 instance type.

a performance indicator of 4.0 means that the respective machine
is about four times “faster” than the reference machine. Besides the
performance indicator, machines have properties that describe the
amount (availableMemory) and price (memoryPrice) of available
memory. If necessary, our model can be extended with additional
properties, e.g., to describe storage capacities and prices or QoS
properties such as the availability. However, we explicitly decided
to use a simple model as our approach targets the design phase.

For every connection, the latency property gives an estimate on
the latency between two machines. Furthermore, availableBand-
width and bandwidthPrice specify amount and price of available
bandwidth. A machine may have multiple connections to another
machine so that incoming and outgoing data can be modeled sep-
arately and slow but inexpensive as well as fast but expensive
connections can be considered.

2.3 Application Model
IoT applications are often event-driven: “things” produce data stre-
ams, the data streams are analyzed to identify certain events, and
events trigger actions on other “things”. In the fog, each of these
functions is potentially executed at a different location. Therefore,
an application architecture should build on self-contained mod-
ules which can be run individually and exchange information by
interconnecting data streams, as also done in [5, 7, 18].

For such application modules, we identified three distinct types:
source, service and sink. Sources produce data, services process data
and forward results, and sinks receive data. Figure 2 shows an illus-
trative application model with four distinct application modules:
one source, one service, and two sinks. As our approach aims to
enable model definitions very early during the design process, we
again decided to use only a limited set of module properties.

Source: Sensor
outputRate 40kB/s

mode individual

requiredMemory 100MB

Service: Aggregator
outputRatio 0.5

mode total

referenceProcessingTime 5s

requiredMemory 1000MB

Sink: Storage 1
requiredMemory 500MB

Sink: Storage 2
requiredMemory 500MB

40kb/s

10kB/s 10kB/s

Figure 2: Example of an Application Model

In our model, sources, e.g., IoT sensors, produce a constant and
continuous stream of data at a defined rate (outputRate) which is
processed by a sequence of services in a certain amount of time (ref-
erenceProcessingTime). With this abstraction, developers only have
to specify the amount of data produced per time and do not need
to be concerned about details such as data transmission intervals
or varying data stream volumes. E.g., in figure 2 the Sensor source

Supporting the Evaluation of Fog-based IoT Applications During the Design Phase M4IoT’18, December 10–11, 2018, Rennes, France

sends 40kB/s of temperature sensor readings to the Aggregator
service which needs five seconds to aggregate the data before its
results are forwarded to the two sinks Storage 1 and Storage 2. The
service output rate is dynamically calculated by multiplying the
amount of incoming data with the respective outputRatio which
defines how the service changes the incoming data stream volume.
In the example, the Aggregator service has an output rate of 20kB/s
(40kB/s ∗ 0.5).

Note, that services do not “block” while processing data, i.e., they
continuously receive and process data. As the actual processing
time can only be determined by benchmarking real application
modules on physical infrastructure – which is not feasible during
the design phase – we simplify this problem by only requiring
developers to estimate how long the processing would take on
a reference machine. With this information we can estimate the
actual processing time based on the performance indicator of the
machine the module is placed on and the reference processing time
of the module. For example, the Aggregator of figure 2 is estimated
to require 5s for the processing of data on the reference machine
which has a performance indicator of 1.0.

Every service and source has a mode which describes how the
application module output rate is distributed across outgoing data
streams. Either every individual subsequent module receives the full
calculated output rate (mode = “individual”), or the total amount of
data produced by the module is uniformly split across all outgoing
data streams (mode = “total”). For example, if the Aggregator service
from figure 2 had four outgoing data streams instead of two, each
data stream would contain 5kB/s as the calculated output rate of
20kB/s would need to be divided by four. Lastly, each module has
the property requiredMemory which defines how much memory it
will use at runtime.

Developers do not have to specify any properties for data streams,
except which modules they connect. The amount of required band-
width (requiredBandwidth) can be derived from output rates, output
ratios and specified module modes.

2.4 Simulation
Based on the infrastructure and application model, developers
should be able to interactively evaluate the effects of a module
placement option on QoS and cost. With the current model proper-
ties, we simulate effects on four metrics: processing cost, processing
time, transmission cost, and transmission time. The cost metrics de-
scribe the average cost per second in a given setup; the time metrics
describe how long it takes to process a single data item on a certain
machine or to transmit it over a connection. We propose to use a
tool implementation to determine these metrics. Such an interac-
tive simulation tool has to run a number of calculations after each
module placement, which we describe below. As an illustrating
example, we continue to use the application model introduced in
figure 2.

1. Data stream routing: The tool has to determine which con-
nections are used by each of the modules’ data streams, i.e., are
involved in the information exchange with other modules. E.g, let
us consider an infrastructure model with machines A, B, and C; A
is connected to B and B is connected to C. When the Sensor service

is placed on A and the Aggregator service is placed on C, the data
stream between those two modules involves the A-B connection
and the B-C connection. In more complicated cases with multiple
possible connection paths, the tool can use a shortest path algo-
rithm such as Dijkstra [8] to determine the set of connections with
the cheapest bandwidth price.

2. Resource usage: The tool has to calculate how a placement
affects bandwidth and memory utilization of machines and con-
nections. The new amount of used memory equals the old amount
plus the amount required by the placed module. Similarly, for each
of the module’s data streams, the new amount of used bandwidth
for each connection equals the connection’s old amount plus the
amount required by the data stream. If a module is removed from a
machine, bandwidth and memory utilization are reduced by the re-
spective values. For instance, if machine C uses 500MB of memory,
the additional placement of the Aggregator service on C results in
a total usage of 1500MB, and connections A-B and B-C both use a
bandwidth of 40kB/s.

3. Under-provisioning: The tool has to calculate the under-pro-
visioning ratio (underProvisionRatio) for each connection and each
machine, which describes the proportion between required and
available resources. If more resources are available than used, the
ratio equals 1. Otherwise, it equals the amount of used resources
(bandwidth or memory) divided by the amount of available re-
sources, e.g., the placement of the Aggregator service on a machine
with 100MB of memory would lead to an under-provisioning ratio
of 10 (1000MB/100MB = 10).

4. Individual cost metrics: The tool has to calculate transmission
cost and processing cost for each data stream and application mod-
ule. For this, it has to consider under-provisioning of resources. The
transmission cost equals r equiredBandwidth

underProvisionRatio ∗ bandwidthPrice

and the processing cost equals r equiredMemory
underProvisionRatio ∗memoryPrice .

5. Individual time metrics: The tool has to calculate transmis-
sion time and processing time for each data stream and module.
If the respective resource is under-provisioned, each time metric
is infinite because the system would experience a backpressure
that can never be handled as the input always exceed the transmis-
sion or processing capabilities. Otherwise, the transmission time
per connection equals its latency, and the processing time equals
the machine’s estimated processing time (which considers the ma-
chine’s performance indicator).

6. Total metrics: The tool has to calculate a total metric for each
individual cost and time metric with which developers get a first
impression on a design’s characteristics by studying a single value.
E.g., the total processing cost equals the sum of each module’s pro-
cessing cost.

7. Recommendations: The tool has to provide developers with
recommendations on how to optimize placements and the current
infrastructure or application model. These recommendations can be

M4IoT’18, December 10–11, 2018, Rennes, France J. Hasenburg et al.

based on information such as under-provisioned machines and con-
nections. Additionally, the recommendations have to help identify
invalid module placements where a missing infrastructure connec-
tion disrupts data streams. Furthermore, recommendations have
to highlight which machine and connection resources could be
reduced without affecting QoS or cost.

We opted for this set of metrics, as they give a good overview
about effects on QoS and cost for a particular design. In addition,
our tool can calculate these metrics before a developer has full
information about the runtime infrastructure and before the ap-
plication is implemented, as we only require some modeling data
about the application components and the planned runtime infras-
tructure. For the price of an increased complexity, it is also possible
to extend the infrastructure and application model properties if
more extensive QoS and cost metrics are required, or additional
recommendations should be derived.

3 EVALUATION
The evaluation of our proposed approach is twofold.We first present
our proof of concept implementation (section 3.1). Then, we demon-
strate how our approach can be used in an example scenario (section
3.2).

3.1 Proof of Concept Implementation
As a proof of concept, we implemented FogExplorer, an interactive
simulation tool that follows our approach. FogExplorer is available
as open source5 and is built as a front-end javascript application
that utilizes ECMAScript 2015 features. The tool runs without a
backend or web server, so only a modern web browser is required
for the execution of FogExplorer. For the graph visualizations, we
used the network visualization capabilities of vis.js6, the front end
is built with Foundation7 and jQuery8. We also implemented a
node.js9 package that can be used for automatic model evaluations
without the visual front end.

3.2 Scenario
In this section, we apply our modeling and simulation process from
section 2.1 to an example scenario. Due to page limitations, we
decided to use an edge computing scenario as an example. The
overall process, however, is similar for more advanced scenarios in
which machines are geo-distributed across edge, core network and
cloud.

In our planned scenario, a company wishes to control the climate
in one of their buildings based on sensor readings to reduce energy
cost. Multiple possible designs for such a smart building application
exist, so the company needs to understand effects on QoS and cost
to decide which design should be implemented.

For the climate in a building, many factors are important and
thus should be monitored, e.g., wind force, direct sunlight expo-
sure, inside and outside temperature, or air pollution. Furthermore,
many climate control mechanisms exist, e.g., opening and closing
5https://github.com/OpenFogStack/FogExplorer
6https://visjs.org
7https://foundation.zurb.com
8https://jquery.com
9https://nodejs.org/en/about/

windows, shades, and shutters, air conditioning, or heating. In ad-
dition, weather forecasts and historic data enable more intelligent
decisions [13]. For instance, when a cold front is approaching, it
makes sense to wait a few more minutes rather than cooling down
the temperature with the help of air conditioning if temperature
thresholds have only been exceeded slightly.

For our evaluation, we focus only on the cooling aspect of the
scenario. Moreover, we only monitor the inside and outside tem-
perature and employ two climate control mechanisms: airing and
air conditioning. In other words, when possible the building should
be cooled down by opening windows at appropriate times, i.e.,
when the outside temperature is lower than inside. The energy-
consuming air conditioning should only be used as a last resort.

Property Plan

Window ActuatorAir Conditioning Actuator

Temperature Sensor

Figure 3: General Scenario Setup

The general scenario setup is shown in figure 3. A number of
temperature sensors located inside and outside of the building
emit measurements every second. Each window of the building is
equipped with an actuator that can open and close the window.
Furthermore, a number of air conditioning units are distributed
across the building which are also controlled by actuators.

The main concern of our scenario evaluation is selecting a suit-
able runtime infrastructure for the IoT application controlling the
actuators. We will evaluate two possible runtime infrastructures: de-
centralized and centralized. In the decentralized setup, edge devices
exchange information directly, whereas they only communicate
with a (central) server that also does most of the processing in the
centralized setup.

Each runtime infrastructure option comes with its own set of
advantages and disadvantages. For example, decentralized setups
naturally have no single point of failure and can usually cope well
with network partitioning. In the centralized setup, data access
and debugging become easier. None of these options is superior
in every situation, so a case by case evaluation is required. The
approach proposed in this paper aims to enable this evaluation and

https://github.com/OpenFogStack/FogExplorer
https://visjs.org
https://foundation.zurb.com
https://jquery.com
https://nodejs.org/en/about/

Supporting the Evaluation of Fog-based IoT Applications During the Design Phase M4IoT’18, December 10–11, 2018, Rennes, France

Temperature Edge
Machines (Inside)

Temperature Edge
Machines (Outside)

Air Conditioning Edge
Machines

Airing Edge Machines

Figure 4: The Decentralized Infrastructure Model

Temperature Edge
Machines (Inside)

Temperature Edge
Machines (Outside)

Air Conditioning Edge
Machines

Airing Edge Machines

Server

Figure 5: The Centralized Infrastructure Model

supports decisions with limited information on application archi-
tecture and runtime infrastructure as the evaluation has to occur
early during the design phase. Furthermore, our approach remains
flexible enough to evaluate the impact of various adjustments such
as scaling the number of edge devices or changing resource price
estimates.

Infrastructure and Application Models

The first step in our approach is to create an initial infrastructure
model for each runtime infrastructure. To reduce the model’s com-
plexity, we aggregated all edge machines connected to the same
type of “thing” into a single machine. While this is only possible
when all machines and their connections have comparable hard-
ware resources, we could still create an individual machine for each
edge device, if different resources were to be used.

Figure 4 shows our decentralized infrastructure model. Here,
powerful edge machines are directly connected to the building’s
sensors and actuators and can communicate with all other edge
machines directly. Furthermore, edge machines connected to sen-
sors analyze measurements and emit events, e.g., when a value is
lower than a threshold or unusual high. This preserves bandwidth.
Edge devices connected to actuators analyze received events and
instruct the local actuator based on their analysis. However, each
edge machine requires processing and storage capabilities.

Figure 5 shows our centralized infrastructure model. Here, the
building’s sensors are connected to weak edge devices that send
each measurement to a central server for processing. The server

Window Sensors

Window Actuators

Air Conditioning
Sensors

Air Conditioning
Actuators

Indoor Temperature
Sensors

Outdoor Temperature
Sensors

ED

ED

ED

ED

Airing Manager

Air Conditioning
Manager

Figure 6: The Application Model

analyzes measurements and sends instructions to the edge devices
which in turn only forward them to actuators without additional
processing. While these weak edge devices do not require extensive
processing and storage capabilities, the central server does. In addi-
tion, as all raw sensor data needs to be transmitted to the central
server, the bandwidth utilization is relatively high compared to the
decentralized setup.

Besides the infrastructure model, our approach requires an ap-
plication model. For the scenario, we created the one presented in
figure 6. It is compatible with both runtime infrastructures. Sensor
sources continuously send data to event dispatcher (ED) services
which check whether a new event has to be dispatched. Both the Air
Conditioning Manager and Airing Manager services receive events
and analyze them. Based on the analysis, they send instructions
to the two actuator sinks. Note that every actuator “thing” has a
matching sensor as the managers needs to read the current state,
e.g., whether an air conditioning unit is currently active.

Simulation

Having created both models, developers can begin to place sources,
services and sinks on machines. For both runtime infrastructures,
sources and sinks are placed on edge devices. In the decentralized
setup, ED and Manager services are also placed on the edge, while
all services are placed on the server in the centralized setup. With
these deployment mappings, developers of the smart building can
begin to study how changing properties of the application and
infrastructure models affect the QoS and cost metrics.

In the end, which runtime infrastructure is “better” depends on
the many factors of a concrete scenario. These include the number
of sensors and actuators, frequency and volume of sensor measure-
ments, the tasks and analysis run by EDs and Manager services, as
well as cost for processing and transmission resources. By follow-
ing our approach, developers can run the necessary simulations in
order to receive recommendations, iteratively improve their design,
and compare different design solutions.

As the evaluation presented in this paper is done using a case
study, we prepared a demo10 for this scenario utilizing our proof
of concept implementation FogExplorer. In this demo, readers can

10https://openfogstack.github.io/FogExplorer/

https://openfogstack.github.io/FogExplorer/

M4IoT’18, December 10–11, 2018, Rennes, France J. Hasenburg et al.

evaluate effects on QoS and cost for the centralized and decentral-
ized runtime infrastructure and experiment with different model
properties. Table 1 shows the results for the default values in the
demo. In this particular case, the centralized infrastructure has
higher cost but better QoS metric values, so if such a quality level is
required, the centralized runtime infrastructure should be chosen.
In conclusion, the data provided by FogExplorer allows developers
to make informed decisions on matters such as the choice for a
particular runtime infrastructure without the need for prototype
implementations early on.

Table 1: Results from the Demo Evaluation

Centralized Decentralized
Total transmission cost 3.33 cent/min 0.28 cent/min
Total transmission time 6 sec 4 sec
Total processing cost 0.04 cent/min 0.01 cent/min
Total processing time 0.85 sec 3.4 sec

4 RELATEDWORK
Fog computing is still a new field with many open issues and re-
search questions [2, 9, 14]. While many efforts have been made to
define what fog computing is and what it is good for, the number
of publications that propose solutions for the evaluation of fog
application designs is still limited.

With iFogSim [12], Gupta et al. present a modeling and simula-
tion tool for Fog environments which aims to simulate the effects
of different resource management algorithms such as the ones pre-
sented in [1, 10, 11]. However, iFogSim dose not evaluate application
and infrastructure designs. Furthermore, it requires access to exces-
sive monitoring data which is not available during an early design
phase. Additionally, it only supports strictly hierarchical runtime
infrastructures, as their tool is based on Cloudsim [6].

Brambilla et al. [4] propose a methodology for simulating mobil-
ity, networking, and energy IoT devices in urban environments. As
it aims to help understand how IoT systems with a large number
of interconnected devices behave, their methodology is not suited
for modeling and evaluation of application architecture or runtime
infrastructure designs.

Cardellini et al. [7] propose an approach for the optimal operator
placement of distributed applications based on user-specific QoS
metrics. While we use a comparable application and infrastructure
model, their approach cannot be used in an early design phase
where only limited data is available.

Similarily, Brogi and Forti [5] propose an approach that also uses
a comparable application and infrastructure model to automatically
determine eligible deployment mappings. However, their approach
does not consider cost metrics and cannot be used to interactively
compare different design and mapping options.

5 CONCLUSION
In this paper, we proposed an approach for the evaluation of fog-
based IoT applications that can be used already during the design
phase. When following our approach, developers can compare dif-
ferent design options based on QoS and cost metrics. This approach

builds upon a modeling and simulation process in which runtime
infrastructure and application architecture models are created, and
the effects of application module placements on infrastructure ma-
chines are simulated. As only limited informationmight be available
for the modeling, our proposed simulation procedure only requires
high level model definitions and can therefore be used early in the
development process. As a proof of concept, we presented FogEx-
plorer, our prototypical implementation, and demonstrated how
our approach can be used in an example scenario.

ACKNOWLEDGMENTS
This work partly been supported by the European Commission
through the Horizon 2020 Research and Innovation program under
contract 731945 (DITAS project).

REFERENCES
[1] Hamid Reza Arkian, Abolfazl Diyanat, and Atefe Pourkhalili. 2017. MIST: Fog-

based Data Analytics Scheme with Cost-efficient Resource Provisioning for IoT
Crowdsensing Applications. 82 (2017), 152–165.

[2] David Bermbach, Frank Pallas, David García Pérez, Pierluigi Plebani, Maya Ander-
son, Ronen Kat, and Stefan Tai. 2018. A Research Perspective on Fog Computing.
In 2nd Workshop on IoT Systems Provisioning & Management for Context-Aware
Smart Cities (ISYCC), Vol. 10797. Springer, 198–210.

[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and its Role in the Internet of Things. In Proc. of the First Edition of
the MCC Workshop on Mobile Cloud Computing - MCC ’12. ACM Press, 13.

[4] Giacomo Brambilla, Marco Picone, Simone Cirani, Michele Amoretti, and
Francesco Zanichelli. 2014. A Simulation Platform for Large-Scale Internet
of Things Scenarios in Urban Environments. In Proceedings of the The First Inter-
national Conference on IoT in Urban Space. ICST.

[5] Antonio Brogi and Stefano Forti. 2017. QoS-Aware Deployment of IoT Applica-
tions Through the Fog. 4, 5 (2017), 1185–1192.

[6] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
and Rajkumar Buyya. 2011. CloudSim: A Toolkit for Modeling and Simulation
of Cloud Computing Environments and Evaluation of Resource Provisioning
Algorithms. 41, 1 (2011), 23–50.

[7] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, andMatteo Nardelli. 2016.
Optimal Operator Placement for Distributed Stream Processing Applications. In
Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems - DEBS ’16. ACM Press, 69–80.

[8] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. 1, 1
(1959), 269–271.

[9] Manuel Díaz, Cristian Martín, and Bartolomé Rubio. 2016. State-of-the-art,
Challenges, and Open Issues in the Integration of Internet of Things and Cloud
Computing. 67 (2016), 99–117.

[10] Lazaros Gkatzikis and Iordanis Koutsopoulos. 2013. Migrate or Not? Exploiting
Dynamic Task Migration in Mobile Cloud Computing Systems. 20, 3 (2013), 24.

[11] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. 2017. Cost
Efficient Resource Management in Fog Computing Supported Medical Cyber-
Physical System. 5, 1 (2017), 108–119.

[12] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.
2017. iFogSim: A Toolkit for Modeling and Aimulation of Resource Management
Techniques in the Internet of Things, Edge and Fog Computing Environments.
47, 9 (2017), 1275–1296.

[13] Benjamin Karg and Sergio Lucia. 2018. Deep Learning-Based Embedded Mixed-
Integer Model Predictive Control. (2018), 2075–2080.

[14] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho, Monique J. Mor-
row, and Paul A. Polakos. 2018. A Comprehensive Survey on Fog Computing:
State-of-the-Art and Research Challenges. 20, 1 (2018), 416–464.

[15] Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and
Andreas Riegg. 2016. Internet of Things Patterns. In Proc. of the 21st European
Conference on Pattern Languages of Programs - EuroPlop ’16. ACM Press, 1–21.

[16] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies.
2009. The Case for VM-based Cloudlets in Mobile Computing. (2009), 9.

[17] Mahadev Satyanarayanan, Grace Lewis, Edwin Morris, Soumya Simanta, Jeff
Boleng, and Kiryong Ha. 2013. The Role of Cloudlets in Hostile Environments.
12, 4 (2013), 40–49.

[18] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. 2017. RIoTBench: A
Real-time IoT Benchmark for Distributed Stream Processing Platforms. 29, 21
(2017), e4257. arXiv:1701.08530

http://arxiv.org/abs/1701.08530

	Abstract
	1 Introduction
	2 Approach
	2.1 Modeling and Simulation Process
	2.2 Infrastructure Model
	2.3 Application Model
	2.4 Simulation

	3 Evaluation
	3.1 Proof of Concept Implementation
	3.2 Scenario

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

