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ABSTRACT
Application performance is crucial for end user satisfaction.
It has therefore been proposed to benchmark new software
releases as part of the build process. While this can easily
be done for system classes which come with a standard in-
terface, e.g., database or messaging systems, benchmarking
microservice applications is hard because each application
requires its own custom benchmark and benchmark imple-
mentation due to interface heterogeneity. Furthermore, even
minor interface changes will easily break an existing bench-
mark implementation.

In previous work, we proposed a benchmarking approach
for single microservices: Assuming a REST-based microser-
vice interface, developers describe the benchmark workload
based on abstract interaction patterns. At runtime, our ap-
proach uses an interface description such as the OpenAPI
specification to automatically resolve and bind the work-
load patterns to the concrete endpoint before executing the
benchmark and collecting results. In this extended paper,
we enhance our approach with the capabilities necessary for
benchmarking entire microservice applications, especially the
ability to resolve complex data dependencies across microser-
vice endpoints. We evaluate our approach through our proof-
of-concept prototype OpenISBT and demonstrate that it
can be used to benchmark an open source microservice ap-
plication with little manual effort.

CCS Concepts
•Information systems → RESTful web services; •Software
and its engineering → Software performance; Specification
languages; •Applied computing→ Service-oriented architec-
tures;
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The complexity of today’s software systems and their re-
quirements are growing continuously. Thus, modern appli-
cations often rely on a microservice architecture to ease the
development process(es), the deployment, and the operation
of complex software systems with many components [27].
Instead of one large monolithic system, the business logic
of an application is distributed across many small services
which execute their specific tasks according to the UNIX-
philosophy “Make each program do one thing well” [29].

While the functional requirements of individual microser-
vices can be checked by specifying unit and integration tests,
there are some challenges in ensuring non-functional require-
ments. State of the art live testing techniques coupled with
monitoring include canary releases [20] or dark launches [14],
which deploy a new version of the service in the production
environment and assess its functionality and non-functional
characteristics on a (small) share of actual traffic. However,
live testing is not possible (i) when there is no production
system (e.g., in early development stages), (ii) when testing
for non-current workloads (e.g., testing the Christmas traffic
of the shopping cart service in July), or (iii) when exposing
even a fraction of actual traffic to a new, untested service is
too risky. Thus, an alternative but complementary approach
to live testing or monitoring is to benchmark new microser-
vice releases. In contrast to live testing, benchmarking eval-
uates a microservice in a well-defined and isolated testbed
which can also include related services. Benchmarking, thus,
allows developers to evaluate of non-functional requirements
– such as performance – of microservices in specific environ-
ments, for specific workloads, and over time. For example,
repeatedly running the same benchmark in a controlled en-
vironment while the microservice evolves over time can iden-
tify performance regressions (or improvements) [18, 38, 10].
Benchmarking, however, can be costly to perform. Besides
the setup procedure for the testing environment, workloads
have to be defined, the benchmark run has to be monitored,
and finally the results must be analyzed to decide whether
the requirements have been met.

In other domains such as database benchmarking, there are
a variety of tools, e.g., YCSB [9, 3, 13], which leverage the
common interface of database systems to achieve repeata-
bility and portability. For microservice applications, how-
ever, interfaces and supported operations vary with every



service, making it impossible to find a general interface for
microservice benchmarking. Furthermore, as microservices
evolve over time, interface changes will break ad-hoc bench-
marks that a developer might have implemented.

In previous work [19], we proposed an approach for REST-
based microservices in which developers can specify their
benchmark workload through abstract interaction patterns.
At runtime, these patterns are then automatically resolved
and bound to a concrete microservice leveraging its REST
characteristics. This allows developers to reuse both the ab-
stract workload description and the benchmark execution
environment [3] across microservice releases and the latter
also across microservices. This significantly reduces the ef-
fort for developers while still ensuring that benchmarks ful-
fill important characteristics, namely that they are relevant,
repeatable, portable, verifiable, and economical [7]. In our
previous approach, we focused on single microservices – full
microservice applications or dependencies across microser-
vices were neither considered nor supported.

In this paper, we extend this work to microservice applica-
tions with multiple services and cross-microservice depen-
dencies through a significantly more complex application-
wide pattern matching process. As in our earlier work, we
do this based on the machine-readable interface descriptions
of the respective microservices and resolve the actual work-
load at benchmark runtime. Our extended algorithm iden-
tifies links between microservice operations and resolves the
specified abstract patterns into application-specific interac-
tion sequences which can span multiple microservices.

In this regard, we make the following contributions:

1. We propose an extended approach for benchmarking
of REST-based microservice applications based on ab-
stract and reusable interaction patterns.

2. We present a proof-of-concept prototype implementing
our pattern-based benchmarking approach.

3. We evaluate our approach by benchmarking an open-
source microservice application to demonstrate how
little manual effort is needed for this.

Please, note that providing a complete pattern catalog is
beyond the scope of this paper, but applying our approach
in practice obviously requires a comprehensive set of inter-
action patterns.

The remainder of this paper is structured as follows: After
outlining relevant background in Section 2, we present our
pattern-based benchmarking approach in Section 3 and its
evaluation in Section 4. We discuss our approach in Sec-
tion 5 and present related work in Section 6 before conclud-
ing in Section 7.

2. BACKGROUND
This section outlines relevant designs principles and para-
digms used in this paper.

2.1 Microservices
Lewis and Fowler [27] describe microservices as indepen-
dently deployable and scalable components. In contrast to a
monolithic system which combines all application logic in a
single artifact, the microservice architecture splits the logic
into a suite of services that communicate with one another
over network. Within an application, individual services1

can be written in different programming languages or use
different storage technologies, resulting in a heterogeneous
environment. Being separate deployment units, individual
services can independently be shut down, replaced or up-
dated at will, or new service instances can be deployed at
runtime to counteract performance bottlenecks. Given these
characteristics, all services must be designed to tolerate fail-
ures, as no service can expect correctly typed data or assume
that a required service is always available. A challenge for
microservice architectures is the lack of debugging and log-
ging capabilities, especially in complex setups including a
multitude of services.

2.2 REST APIs
Microservices communicate over the network, relying on net-
worked application programming interfaces (APIs). APIs
can differ in the communication protocols (e.g., TCP, HTTP)
and data formats (e.g., JSON, binary data, XML) they rely
on. In this work, we focus on APIs following the REST ar-
chitectural style. Being heavily inspired by HTTP, REST
APIs evolve around resources being identified by hierarchi-
cal URLs, and use HTTP methods to interact with these
resources (e.g., POST to create one or GET to receive one).
REST APIs do not rely on client state (stateless), and evolve
around the communication of resource representations (typ-
ically in JSON or XML) between clients and servers [34].

Richardson’s maturity model [16] divides REST APIs into
three levels: While level 0 APIs use HTTP only to tunnel re-
quests to an endpoint, level 1 introduces resources which can
be addressed following hierarchical URIs. Level 2 addition-
ally demands that APIs use HTTP verbs to indicate whether
to create (POST), get (GET), update (PUT or PATCH), or
delete (DELETE) a resource. Finally, level 3 inserts links
(URIs) to corresponding services and or resources into the
server responses at runtime, realizing RESTful APIs. In this
paper, we assume APIs to comply at least with level 2 of this
maturity model – specifically, we rely on the use of HTTP
methods for defining abstract operations.

2.3 Interface description
In addition to human-readable API documentation target-
ing (client) developers, REST APIs are often described in
a machine-understandable way using description files such
as OpenAPI 2 or RAML 3. For the sake of simplicity, we
decided to only consider OpenAPI in our work as possible
interface contract.4 OpenAPI files are written in YAML or
JSON and describe where to reach an API, available oper-

1In the following, we will refer to microservices as either
’services’ or ’microservices’ interchangeably.
2https://swagger.io/docs/specification/about/
3https://github.com/raml-org/raml-spec/
4Translations between formats are possible, using for exam-
ple https://apimatic.io/transformer.
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ations, its expected inputs, and possible outputs. Although
the current version, OpenAPI 3.0, supports so-called link
definitions to express relationships between two requests,
they are not designed to describe complex interaction pat-
terns which we develop and present in this paper.

2.4 Benchmarking
Benchmarking “is the process of measuring quality and col-
lecting information on system states” [7] and can be applied
to compare different software versions, configurations, sys-
tem alternatives, or deployments. In benchmarking, a mea-
surement client runs an application-driven workload mul-
tiple times against a system or service under test (SUT),
typically in a non-production environment, and evaluates
the outputs in a subsequent offline analysis to determine its
quality of service (QoS) while complying with various gen-
eral benchmark requirements, e.g., [21, 7]. Benchmarking
requires a very high degree of control over the SUT to make
results reproducible. In contrast to monitoring, which is
about non-intrusive and passive observation of a (produc-
tion) system, benchmarking aims to answer how a system
will react on specific changes or stresses, and is about com-
parison of systems or deployments.

3. PATTERN-BASED BENCHMARKING
Our pattern-based benchmarking approach relies on the ob-
servation that there are sequences of interactions with re-
sources in REST APIs which recur across APIs. One com-
mon example is to list resources of a specific type (e.g., by
performing GET .../customers), to then retrieve informa-
tion about one specific resource (e.g., by performing GET
.../customers/1 ), and finally deleting that resource (e.g., by
performing DELETE .../customers/1 ). Based on this obser-
vation, we argue that it is possible to automatically generate
benchmarking workloads from

• an abstract description of such patterns and

• a description of how to interact with each of the mi-
croservices’ APIs (e.g., in OpenAPI format).

In this section, we start by describing the challenges in gener-
ating such a pattern-based workload. Next, we introduce our
pattern-based solution in detail and finally give an overview
of our approach’s system design.

3.1 Challenges
We have identified the following three major challenges fac-
ing our approach:

(A) The first challenge is to define patterns and workloads
for arbitrary microservice applications, including the
total number of requests and their distribution across
patterns.

(B) Once defined, the individual patterns must be mapped
to the individual services and their respective opera-
tions. Here, an abstract pattern composed of multi-
ple operations (e.g., listResources) must be linked to
service-specific resources (e.g., a list of customers or

Figure 1: Example application used to explain our
matching process.

catalog items) and its operations (e.g., GET ../cus-
tomers and GET ../catalogue).

(C) Finally, the abstract requests must be filled with con-
crete parameter values depending on the interface def-
inition which is, especially for request sequences, hard
because parameter values may depend on the outcome
of previous requests (potentially to a different service).

3.2 From Abstract Interaction Patterns to
Service-Specific Workloads

The key idea of our approach is to define an abstract work-
load separately from the services in an application itself and
to resolve the actual service-specific workload at runtime.
To address the challenges outlined above, which also have
interdependencies, we divide this process into six steps (de-
scribed in detail later). While challenge A is solved in the
first two steps, steps 3 and 4 aim to cope with the diffi-
culties described in Challenge B. Finally, challenge C, the
actual workload generation, is covered in the steps 5 and 6.

1. Pattern definition: Define abstract interaction pat-
terns.

2. Workload definition: Enhance pattern definition
and specify frequency and ratio of requests.

3. Binding definition: Optionally, overwrite default
binding behavior.

4. Binding enactment: Bind abstract interactions to
concrete microservices and their operations.

5. Workload generation: Create application-specific
workload.

6. Benchmark execution: Run the workload against
the SUT and substitute values at runtime.

In the following, we will explain these steps using the ex-
ample application listed in Figure 1. In the example, the
customer and cart service use the same ID field.

Step 1 – Pattern definition: The first step is to define
abstract interaction patterns that are independent of the
microservices but still applicable to them.



Table 1: List of currently supported abstract oper-
ations which are combined to form abstract interac-
tion pattern.

Operation Description

CREATE Creates and returns an item.
READ Reads an item based on some filter (e.g., an

ID) and returns the requested item.
SCAN Reads multiple items based on some (op-

tional) filter (e.g., a keyword) and returns
the results.

UPDATE Modifies an item based on some filter.
DELETE Deletes an item based on some filter.

Table 2: Abstract interaction pattern which re-
quests multiple resources, reads one random item
from the resulting list, and finally deletes the se-
lected item.

Step Operation Input Selector Output

1 SCAN - - list
2 READ list RAND item
3 DELETE item - -

As defined by the second level of Richardson’s maturity
model, the typical REST CRUD operations can be mapped
to HTTP methods: A new resource can be created at a re-
source endpoint by calling the POST HTTP method and
accessed following a path structure at that endpoint. Indi-
vidual resources can be read (HTTP GET ), updated (HTTP
PATCH or PUT ), and deleted (HTTP DELETE). Finally,
multiple resources can be listed by sending an HTTP GET
to a list operation (e.g., GET ../search) which potentially
may return multiple items. In the very first step of our ap-
proach, we use these basic interactions to define the abstract
operations shown in Table 1 which we will later use to bind
abstract patterns to concrete service resources.

While almost all of these interactions refer to a specific single
resource, read operations can request either a single resource
or multiple resources; we therefore distinguish the two read
operations READ (single) and SCAN (multiple). Most op-
erations require some filter information about the item to
read, update, or delete. These do not only include an ID
or key of the requested resource, but also further domain-
specific values if multiple items should be read (SCAN).
Furthermore, we introduce selectors as part of these filter
information: If a list of items serves as input for an opera-
tion, the selector determines which item to pick from that
list (e.g., first, last, or random item).

Our abstract operations already cover the common CRUD
interactions with REST services. If necessary, our approach
can be extended with additional basic operations. Using
the basic operations from Table 1, we can now compose an
interaction pattern as a sequence of abstract interactions.
Thereby, each interaction is linked to a microservice, an op-
eration, an abstract resource, and optional filter informa-
tion. Moreover, it must define where to store output values
of an interaction and from where to obtain input values.

Table 3: Abstract interaction pattern which queries
a list of resources and then requests all associated
resources for one random item.

Step Operation Input Selector Output

1 SCAN - - list
2 SCAN list RAND sublist

Figure 2: Matching the pattern from Table 3 to two
different interaction sequences.

The complete interaction pattern for the abstract example
from the beginning of this section is shown in Table 2: First,
a SCAN operation determines all available resources on a
service resource endpoint and stores the resulting values in
a variable called list. Next, an individual value is selected by
a random selector from this list, the corresponding resource
is read (possibly from another microservice), and stored into
a variable called item. Finally, the selected item is deleted.

Table 3 motivates a more complex example with sub-resour-
ces. The interaction starts again with a SCAN of available
resources and the outcome is written to a variable called
list. Applied to a microservice application, this could, e.g.,
request a list of users which each have a number of sub-
resources. Next, a random item from that list serves as
input for a subsequent SCAN operation which requests all
(sub-)resources for the chosen item, e.g., a list of all credit
cards for the selected user or a list of all items in the user’s
shopping cart (see Figure 1). Figure 2 shows how the binding
of the pattern shown in Table 3 would later be resolved
for the two example sub-resources: In the upper part, the
selected customer ID is used to retrieve all credit cards of the
selected user from the same microservice as sub-resources.
In the lower part, the ID is used to list all items in the
selected user’s cart via a second microservice.

Step 2 – Workload Definition: The next step is to spec-
ify the actual workload which should be executed against
the SUT. Similar to the business transactions in Bench-
Foundry [3], a pattern definition can include optional con-
ditions for individual patterns (e.g., waiting times between
operations to mimic realistic user behavior). Comparable to
YCSB [9], which defines a workload based on a total number
of operations as well as the respective share of each database
operation, we define a workload based on three pieces of in-
formation: first, the list of all patterns which shall be used;



second, the total number of pattern invocations; third, the
share or weight of each pattern. At execution time, multiple
such patterns are usually executed in parallel.

In the following, we will refer to the abstract interaction
patterns defined in Step 1 and the workload definition as
pattern configuration.

Step 3 – Binding Definition: While our matching algo-
rithm automatically identifies links between requests, there
are several cases in which these automatic bindings should
be suppressed or require additional information. In this
optional adjustment step, developers can manually exclude
specific service operations from the matching algorithm or
define links between microservices. If used, this provides ad-
ditional information to the default binding process described
in Step 4 below.

As one usage scenario, microservice applications sometimes
provide multiple resource endpoints (e.g., /customers and
/catalogue) which can be used by the benchmarking client
for an interaction pattern. By default, all possible resource
endpoints and operations are used by the benchmark. When,
however, the automatic binding from pattern to resource and
operation should be suppressed (e.g., in case that only the
/customers resource endpoint should be benchmarked), this
can be achieved by excluding the respective service endpoint
for a subset of the patterns.

As another usage scenario, a manual definition can also be
used to link parameters of two services with the goal of en-
abling interaction sequences which span multiple microser-
vices of the same application. For example, if the resources
of the user service can be accessed through a parameter
called id and another service uses the same IDs to maintain
the shopping carts for the respective user, then our bind-
ing algorithm needs this manual link definition to match an
abstract pattern to these two services, i.e., to clarify that
the second ID is indeed the user ID and not the cart ID.
Here, semi-automatic approaches based on text similarity
measures can support developers to define these links. For
simplicity of presentation, however, we will focus only on
manual links between services in this paper.

Step 4 – Binding Enactment: As already described
above, our approach for automated binding enactment relies
on a number of key ideas: First, REST operations can di-
rectly be mapped to the corresponding HTTP methods, e.g.,
a CREATE is mapped to an HTTP POST. Second, a mi-
croservice which complies with the second level of Richard-
son’s maturity level exposes its operations in a way that is
compliant with the REST operation semantics, e.g., creat-
ing a new user will always be exposed as a CREATE which
can then be mapped to POST. Third, the input and out-
put of these operations as well as the corresponding data
schema are described in the interface description file, i.e., in
our case, the OpenAPI file, so that we can link the output
of one operation to the input of another. This allows us to
create the cross-operation links in our interaction patterns.
Finally, the interface description also provides information
on where to find the microservice, hence, we can actually in-
voke it once we have completed all the mappings as described
above. Based on the reasoning above, we can automatically

Algorithm 1: Generate Interaction Sequences

Input: pattern - abstract interaction pattern
Input: specs - list of interface descriptions
Result: sequences - supported interaction

sequences
1

2 /* Initialization */

3 AO = IdentifyAbstractOperations(specs)
4 root = CreateRootNode()
5

6 /* Matching */

7 for i← 0 to pattern.size do
8 a = pattern[i]
9 candidate = FindByAbstractOperation(a,AO)

10 foreach node ∈ GetNodesByLevel(i,root) do
11 foreach o ∈ candidate do
12 if AreDependenciesResolvable(node, o)

then
13 AddChildNode(node, o)
14 end

15 end

16 end

17 end
18

19 /* Sequence Extraction */

20 sequences = ExtractSequences(root)

generate a binding between an interaction pattern and the
actual sequence of HTTP calls – subject to the conditions
above, e.g., that creating a new user is not exposed as a
PUT.

A pattern can be mapped to a microservice application if
there is at least one supported interaction sequence for this
pattern within the application. As shown in Figure 2, this
can either affect a single service only or an operation result
can be used to interact with another service, thus, enabling
a cross-service benchmark run.

Algorithm 1 describes the algorithm we use to match and
generate the application-specific interaction sequences; it
has the three phases Initialization, Matching, and Sequence
Extraction.

Step 4.1 – Initialization: First, we analyze the interface de-
scription of all services and determine the abstract operation
for all resource paths and operations (line 3). While it is
easy to determine the operation for creation, modification,
and deletion as they directly map to an HTTP method by
convention, this is more difficult for the SCAN and READ
operation. Here, we have to inspect the resource path a bit
further and check if it ends with an input parameter. If so,
the parameter refers to a key or an ID and supports the
READ operation; If the resource path does not end with a
parameter and returns an array of items, it can be bound to
the SCAN operation.

Next, we initialize a virtual root node of a tree data structure
which we will use to store intermediate results of pattern
matching (line 4). The paths in the tree from root to leaf
will later hold our interaction sequences.



Figure 3: Mapping a pattern to interaction se-
quences, only one sequence (list all users, read one
random user, and delete the selected user profile)
supports the example pattern.

Step 4.2 – Matching: In the Matching phase, we iterate
over the abstract operations in the pattern and select all
service operations of the same abstract type as a list of op-
eration candidates (lines 7-9). For the abstract interaction
pattern in Table 2 and our example application, the first
operation can be mapped to three service-specific operation
candidates: listing all users, listing all credit cards of a user,
and listing all items of the catalog service (see Figure 3).

Next, we iterate over all leaf nodes node at the specified level
in the tree (for the first pattern operation this is the root
node) and check for every candidate operation o whether its
dependencies can be fulfilled on the path from root to node
(lines 10 - 16). Candidate operations that do not require
input values (such as listing all users) have no dependencies
and can, hence, always be used. In that case, we simply add
this operation as a child node to node. If, however, there are
dependencies, we verify that the required information can
be obtained from previous requests on the path from root
to node. In our example, this affects the sequence starting
with listing the cards of a user: As it is a candidate for
the first operation, there is no information available on the
required user ID, see Figure 3. Any operation for which
all dependencies can be resolved is added as a child node;
all other operations are disregarded (lines 12 - 14). In this
step, it is also possible to define additional conditions that
an operation needs to fulfill before it can be added as a child
node; in our prototype, for instance, we have implemented
a filter that only adds operations that target microservices
already used on the current path or microservices for which
an explicit link has been defined in step 3. We do this to limit
the number of interaction sequences, but it is not strictly
necessary to do so.

We execute this for all operations in the pattern and, thus,
gradually build our tree data structure. In the third example
in Figure 3 for instance, we can see that the first two oper-
ations of the example pattern can be matched against the

catalog service. The third operation (DELETE), however,
cannot be matched since the only available service-specific
DELETE requires a user ID as input which cannot be ob-
tained from the two previous operations (listing all catalog
entries and reading a specific catalog item).

Step 4.3 – Extract Sequences: Finally, we extract the inter-
action sequences from our tree. For this, every path from
the root node to a leaf that – excluding the root node –
contains the same number of nodes as the pattern has oper-
ations represents an interaction sequence. Shorter paths are
incomplete interaction sequences where one or more pattern
operations could not be matched; these can be discarded.

When at least one interaction sequence per pattern has been
found, the binding is saved and represents the automatic
binding for the combination of patterns, binding definition,
and interface descriptions. In some cases, the binding algo-
rithm may find sequences that are not relevant or not de-
sired in the respective use case. These sequences can either
be deleted or deactivated manually or can be used to create
additional load on the SUT.

Step 5 – Workload Generation: With the previously
created binding and the interface descriptions, we can fi-
nally generate the benchmark workload by building HTTP
requests which follow the interaction patterns and the re-
strictions in the interface description files. First, each pat-
tern operation can be directly resolved to an HTTP method
based on the binding. Next, we can fill the required param-
eters and request body content of each request by inspect-
ing the interface description of the respective microservice
and generating random values for all interactions: In Open-
API, complex parameter values and request bodies are de-
scribed using JSON Schema.5 We can use these descriptions
to generate the required data items filled with random val-
ues. Moreover, we can generate use-case specific values such
as product names or Bitcoin addresses by augmenting the
service description with special keywords.

As stated above, some content of the individual requests
may depend on the returned values of previous calls (e.g.,
identifier values). These values must be injected later in
the benchmark execution phase (Step 6) for which we use
special markers. Nevertheless, once the required number of
pattern executions has been generated, the workload can be
persisted and reused across several benchmark runs even if
the generated workload is incomplete in that sense.

Step 6 – Benchmark Execution: As already stated above,
some values of the workload must be replaced during the
execution if there are dependencies between requests. For
these values, there are many sources depending on the con-
crete operation: A CREATE operation could, for example,
return the ID of the created item or respond with an HTTP
200 status code if the ID was part of the request and the item
was created successfully. Depending on the implementation,
the subsequent READ request must select the ID from the
response or the request body of the preceding request; this,
however, only if the response had an HTTP 200 status.

5https://json-schema.org/

https://json-schema.org/
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Figure 4: Linking two related requests based on the
content. If a link is detected, the successive request
is updated and returned.

For such purposes, we have designed the linking unit inter-
face illustrated in Figure 4: A linking unit tries to find and
resolve dependencies based on the preceding requests (in-
cluding message body, response, etc.), the current request
(including the values to be replaced, e.g., a parameter), and
the abstract pattern operation. If a linking unit detects a
link, it resolves the dependency, e.g., by replacing the place-
holder value in the current request body with some value
from the parameters of the previous one, and returns the
updated request or ”undefined” otherwise. This way, it is
possible to apply multiple linking units sequentially until a
dependency has been resolved; it also allows us to order the
application of several units hierarchically (e.g., general or
very service-specific units first).

Currently, we have identified four different types of link-
ing units but additional, potentially service-specific, custom
units can be added:

• OpenAPI Link Linking Unit: OpenAPI 3.0 doc-
uments can define links which describe further oper-
ations and their content after a query. This linking
unit inspects the link definitions of the preceding re-
quest and replaces the values of the current request
accordingly.

• Binding Linking Unit: This unit resolves the links
manually defined in the binding definition (see step 3).

• Parameter Name Linking Unit: Individual re-
sources can often be accessed by following a path struc-
ture in REST interfaces, e.g., /{username}. These pa-
rameters were initially filled with placeholder values in
Step 5 which have to be adjusted now to access actual
resources. This linking unit searches for these values in
the preceding request based on the parameter name. If
exactly one element with this name as key is found in
the request (either in parameter values, request body,
or response), this value is used in the current request.
If there are multiple values to choose from, which one

Figure 5: Overview of our system design and setup
including input and output documents.

is chosen is determined by the selector (e.g., select a
random value).

• ID Linking Unit: In some cases, parameter names
in the preceding and current requests do not match
exactly. For example, a user is created with a field
named ”id” in the request body and individual users
can be accessed via the path /{userID}. This linking
unit resolves dependencies by searching field names for
the substring ”id” and replacing values in the same
fashion as the parameter name linking unit.

• Custom Linking Unit: Finally, as dependencies can-
not always be detected and resolved with our default
linking units, developers can also define custom and
service-specific linking units which can be added to the
application chain of units by implementing the linking
unit interface.

3.3 System Design
Our system design comprises a number of components; these
– along with the corresponding steps – are shown in Fig-
ure 5. The Pattern Binder creates service-specific inter-
action sequences based on API description files, a pattern
configuration, and optional binding definitions (steps 1 to
3). Once the Pattern Binder has bound every pattern to
at least one interaction sequence (Step 4), the binding can
be stored and, if necessary, adjusted manually (e.g., if the
automatic algorithm identified an unusual but possible inter-
action sequence). Next, the Workload Generator generates
the service-specific but incomplete workload based on this
pattern binding (Step 5). As a pattern execution is by def-
inition independent of other pattern executions (otherwise,



Figure 6: Our evaluation focuses on three microser-
vices of the Sock Shop application and their inter-
dependencies.

they should be merged into one pattern), we can parallelize
pattern execution and also distribute this execution across a
number of Worker Nodes. Similar to the method proposed
in [3], the Benchmark Manager does this by partitioning the
workload into worker packages to enable concurrent execu-
tion (the number of packages corresponds to the number of
concurrent Worker Nodes), then distributes the worker pack-
ages to the available Worker Nodes, manages the (concur-
rent) benchmark execution, and collects the results. Finally,
as our approach is intended for use in Continuous Integration
and Deployment pipelines [18, 38], the Benchmark Manager
compares the observed metrics to predefined requirements
and constraints such as service level agreements (SLAs) to
ultimately decide on success or failure of the benchmark run.

Within a worker package, requests across patterns can be
interleaved as long as requests within a pattern are not re-
ordered. As some requests depend on the outcome of preced-
ing ones (e.g., the UPDATE operation requires the resource
ID which was part of the result from a previous CREATE
call), the Worker Nodes cannot simply read the generated
workload and run the requests against a service endpoint,
but must adapt some values at runtime with the outcome
from posted requests based on the linking units (Step 6).

4. EVALUATION
In our original paper [19], we evaluated our benchmarking
approach through a proof-of-concept prototype and a set
of experiments with three different microservices to demon-
strate the general applicability for benchmarking individual
services. In this paper, we omit these single service ex-
periments and focus on evaluating our extended approach
by benchmarking an entire microservice-based application
with multiple services using our improved proof-of-concept
prototype. As, again, our focus is the applicability of our
approach, the actual measurement results are irrelevant as
long as results can be obtained. In this section, we first
present our proof-of-concept implementation and describe
the microservice application which we benchmarked. Next,
we describe how we followed the individual steps of our ap-
proach to create and run a pattern-based benchmark work-
load. Finally, we summarize our evaluation findings.

4.1 Proof-of-concept Implementation
We implemented our approach and system design as an
open-source proof-of-concept prototype6 written in Kotlin.
Our prototype implementation can be integrated in an ex-
isting Continuous Integration and Deployment pipeline and
comprises four components:

1. A Pattern Binder which maps abstract interaction pat-
terns to service-specific operations.

2. A Workload Generator which fills the requests with
random values based on the interface description.

3. A Benchmark Manager which orchestrates the bench-
mark run and aggregates the results.

4. Worker Nodes which execute the workload, resolve de-
pendencies between successive requests using linking
units, and measure the runtime of each operation to
report the results.

Our prototype uses the open-source library json-schema-
faker7 to generate data for the workload. This library al-
lows us to generate the required JSON elements for the in-
dividual HTTP requests based on the schema information
in the OpenAPI description file. Moreover, our prototype
also supports special faker keywords (defined by the library
Faker.js8) which can be added to the OpenAPI file. These
additional keywords can be used to generate realistic and
use-case-specific workload values (e.g., names, product IDs,
or dates).

4.2 Sock Shop Microservice Application
We evaluate our approach on a microservice-based Web-
shop9 for socks which implements an e-commerce applica-
tion. In our experiments, we focus on the following three
REST services and dependencies (see Figure 6):

User Service10: The user service maintains the customer
information such as usernames, passwords, credit cards, and
addresses. Each user has a unique customer ID which is
used to access the respective data set as REST resource.
Moreover, there are also resource paths for credit cards and
addresses. For example, a new address can be created by
sending an HTTP POST to /addresses and all addresses of
a customer can be queried by sending an HTTP GET to
/customers/{id}/addresses.

Cart Service11: Each user has a virtual shopping cart
which is as REST resource identified by their customer ID.
Items from the catalog service can be added, deleted, or
modified.

6https://github.com/martingrambow/openISBT
7https://github.com/json-schema-faker/
json-schema-faker/
8https://github.com/marak/Faker.js/
9https://microservices-demo.github.io/

10https://github.com/microservices-demo/user
11https://github.com/microservices-demo/carts
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Table 4: An overview of the four interaction pat-
terns which we use in our experiments.

Pattern Step Operation Input Selector Output

LST 1 SCAN - - list
2 READ list RAND -

DEL 1 SCAN - - list
2 READ list RAND item
3 DELETE item - -

SUBLST 1 SCAN - - list
3 SCAN list RAND sublist

TWOIN 1 SCAN - - list1
2 SCAN - - list2
3 CREATE list1, RAND, item

list2 RAND

Catalog Service12: The catalog service provides an inter-
face for retrieving all products available in the shop. A data
item comprises an item ID (which is also used for accessing
the respective REST resource), a description, tags, and the
price of the corresponding product. The service only offers
operations for browsing existing products, items can neither
be modified nor added or removed.

4.3 Experiment
In line with our proposed process, we run the following ex-
periments to evaluate our pattern-based benchmarking ap-
proach:

Step 1 – Pattern Definition: We evaluate the REST mi-
croservices discussed above with four self-defined abstract
interaction patterns as shown in Table 4: First, a simple
list pattern which lists available resources and reads an item
from that list (LST). Second, our introductory example pat-
tern from Table 2 which identifies and deletes a resource
(DEL). Third, our more complex example pattern from Ta-
ble 3 which lists sub-resources for a randomly selected root
resource (SUBLST). Fourth, another complex pattern which
creates a new resource based on two input values (TWOIN).

In all steps where an item needs to be selected from a list, we
always use a random selector for reasons of simplicity but
there will of course be services for which another selector
makes more sense, e.g., picking the latest item. Moreover,
we want to emphasize again that these patterns are examples
only, as our goal is not to identify a comprehensive pattern
catalog.

Step 2 – Workload Definition: In this evaluation, we
want to demonstrate the general functionality and applica-
bility of our approach and not to rate the performance of
individual microservices. Thus, we run rather “small” work-
loads and use one benchmark run only. In practice, however,
these parameters must be adapted to fulfill usual benchmark
best practices, e.g., regarding execution duration [7]. For our
experiment, we run 1,000 pattern requests in total, 250 per
pattern. We also run an initial preload phase which inserts

12https://github.com/microservices-demo/catalogue

Figure 7: All our example patterns can be matched
to at least one interaction sequence each.

1,000 customers including one credit card, one address, and
one cart item in advance for each user. The catalog service
already offers nine items out of the box.

Step 3 – Binding Definition: For our experiment, we
do not have to manually exclude operations (this may be
different in other scenarios). We, however, define five man-
ual links for the ID fields of the evaluated microservices as
shown in Figure 6.

The customer ID, which is the key for accessing the REST
resource, is used in four different contexts under different
names: Within the user service, the field id is used for the
/customers and /register paths. Moreover, the same value
is referenced as userId in the /cards and /addresses paths.
Besides these links, we define two links which connect the
user service to the cart service via the customer ID and the
cart service to the catalog service via the item ID.

Step 4 – Binding Enactment: Here, we bind our exam-
ple patterns to the target microservices and their resources.
Figure 7 outlines the resulting binding for each pattern, in-
cluding our manual definitions from Step 3.

For the LST pattern, our binding algorithm identifies five
possible interaction sequences. Three of them are limited to
the user service (e.g., query a list of customers and get the
details of a random customer afterwards), one interacts with
the catalog service (get all items and select a random one),
and one sequence combines the user and cart service (query
a list of customers and get the virtual cart of one random
customer from the resulting list).

The DEL pattern can be found in six interactions. The
first four interactions start with listing registered customers.
Next, one randomly selected customer ID can be used to ei-
ther get the details for this customer or to get the customer’s
shopping cart. Third, the customer ID serves as input to
delete either the customer or the cart. The remaining two
sequences start with listing all credit cards or addresses. In
the first binding iteration, the search is restricted to the re-
spective endpoint and the /customer endpoint as no other
link has been defined (we discussed this additional condition
in Step 4 of Section 3). Thus, the id fields are not mixed up
and the READ operation continues to use either the /cards
or /addresses endpoint. The /customer endpoint is disre-

https://github.com/microservices-demo/catalogue


Figure 8: Example results for total sequence dura-
tion with n=250 measurements per pattern. The
box plots use the same order as the interaction se-
quences in Figure 7.

garded because the customer.id is not linked to the cards.id
(but to cards.userId). The same holds for the second binding
iteration and the final DELETE operation.

Our binding for the SUBLST pattern identifies three inter-
action sequences, all starting with listing customers. Next,
the randomly selected customer ID can be used to list the
user’s addresses, credit cards, or shopping cart items.

The TWOIN pattern combines two different inputs to create
a new resource. In our evaluated application, this pattern
can be used to add items from the catalog to a user’s shop-
ping cart. For the first two operations, it does not matter
whether customers or items are listed first as neither oper-
ation has a dependency on the respective other one. Thus,
our binding algorithm identifies two interaction sequences,
one starting with listing customers, the other starting with
listing catalog items. Finally, the CREATE operation re-
quires one input as parameter and another input inside the
request body. Here, other operations (such as registering
a new customer) are not matched because they either ex-
pect only one input value or the manually defined service
links do not match (e.g., the card.id is not linked to the
cart.customerId).

Step 5 – Workload Generation: To generate the work-
load for our experiments with our prototype, we adjust the
OpenAPI files slightly for the following reasons: First, we
convert13 the service descriptions to the current OpenAPI
version 3.0 for implementation reasons. Second, we align the
description with the actual implementation, as the OpenAPI
file is missing a few properties offered by the corresponding
implementation. Finally, we add faker.js keywords to gen-
erate realistic random values, e.g., for names, numbers, and
dates.

13https://mermade.org.uk/openapi-converter

Step 6 – Benchmark Execution: We run our bench-
mark on AWS EC214 instances, all in the same availability
zone. For our experiment, one instance runs the Sock Shop
microservice application including the three evaluated mi-
croservices and two instances each run a Worker Node with
five threads each to demonstrate the parallelization and scal-
ability features of our prototype. Finally, a fourth instance
hosts the Pattern Binder, Workload Generator, and Bench-
mark Manager.

Our experiment benchmarks three different REST microser-
vices of an example application. As a result, we get pattern
execution measurements which include the total pattern du-
ration and the duration of individual requests. These mea-
surements can, e.g., be used to generate box plots for each
pattern and interaction sequence. Figure 8 shows the la-
tency at pattern level for our evaluated patterns using box
plots15. Again, since the actual results are irrelevant and
only show the applicability of our approach, we do not dis-
cuss the measured results.

4.4 Summary
As described above, our prototype can benchmark typical
microservice-based applications with minimal adaptation ef-
fort. After initializing all application services, our proof-
of-concept implementation benchmarks the evaluated and
linked microservices (almost) out of the box and only a few
minor changes in the description file are needed. Moreover,
the abstract workload definition – which, in our evaluation
example, is a JSON file with less than 100 lines – can be
reused across a variety of services in different versions. The
five manual links between the microservices which we had
to define are about 30 lines. Unless major breaking inter-
face changes are made, these manual links can be reused
across benchmark runs against different versions of the mi-
croservice application. Overall, we managed to design and
setup the benchmark for the entire microservice applications
in less than an hour in total which significantly reduces the
effort necessary to benchmark a microservice: there is sim-
ply no need anymore to manually implement a benchmark
(tool) from scratch which can also be quite challenging [4].

5. DISCUSSION
As the evaluation shows, our approach can be used to bench-
mark REST microservices based on their service description
but, nevertheless, there are some points to consider when
applying our pattern-based approach and which we want to
discuss in more detail here. Moreover, we also present cur-
rent limitations and propose possible solutions for them.

Our design generates a synthetic and traced-based work-
load based on a pattern and workload definition. Defining a
proper workload comes with its own challenges (which, how-
ever, is not specific to this approach). If a workload defini-
tion creates more resources than deleting existing ones, the
list of resources grows with every iteration and may produce
unrealistic workloads. E.g, the workload definition from our
evaluation may fit the carts service because the number of

14https://aws.amazon.com/ec2/
15Boxes represent 25%, 50%, and 75% quartiles; whiskers
show min and max duration for each sequence
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items is usually constant (about the same number of addi-
tions and deletions) but, on the other hand, it may not fit
the customer service well, where the number of users usu-
ally increases during the service lifetime because there are
more new users registering than existing ones leaving. Thus,
the actual patterns and a realistic distribution of these pat-
terns has to be considered when defining the workload (e.g.,
by inspecting the log files to identify common interactions
and their frequency [22]). This also implies that an exist-
ing workload based on a common pattern catalog yet to be
defined cannot be applied blindly to other microservices.

Next, our approach relies on the semantics of REST-based
interfaces and assumes HTTP-based microservices. Microser-
vices using other communication protocols can be used as
well but essentially require manual bindings for every oper-
ation. Since the basic CRUD semantics exist independent of
the protocol used, it will be interesting to see whether there
are common ways in which these are exposed in non-REST-
based microservices and whether these could be leveraged
by our approach. E.g., the abstract operations could be
mapped via the function name instead of the HTTP verb.
Nonetheless, our approach can already be used for a large
variety of microservices for which there are no benchmarking
alternatives yet.

While not every pattern and workload definition can be
blindly applied to every REST microservice, our approach
allows developers to run a benchmark against REST ser-
vices which share the same characteristics in general, which
is helpful in several situations: First, every new service ver-
sion can be compared to older versions as long as the indi-
vidual changes do not alter the basic characteristics of the
microservice. This is particularly important for use in Con-
tinuous Integration pipelines [18, 38, 10]. Second, if the API
changes (e.g., a new parameter is introduced or a schema is
adjusted), nothing but the interface description file must
be replaced (ideally, this description is generated from the
microservices’ source code with every build) and the bench-
mark adapts automatically, there is no need to adjust work-
load files or source code. Third, our approach can be used
to evaluate different services which share the same purpose
(e.g., user management). This is particularly useful when
replacing a microservice with a new one as both can be
benchmarked and compared extensively prior to switching
in production.

In contrast to our initial prototype which was limited to
single microservices and did not consider cross-service de-
pendencies and sub-resources, our extended approach ad-
dresses this issue. There are, however, still some limitations:
First, the dependencies between microservices must be de-
fined manually in advance. This requires domain knowledge
about the target application and can be hard for applica-
tions with many services. Here, our prototype could be en-
hanced with an automated analysis based on text similarities
which detects the service dependencies automatically to sup-
port application developers, e.g., that identifies that userID
and user/{id} refer to the same property. Furthermore,
our binding algorithm identifies all possible interaction se-
quences for a pattern configuration (and an optional binding
definition). This should be handled with caution as the bind-
ing might also identify unrealistic sequences which should

be disabled before running the benchmark. E.g., two of the
DEL interaction sequences which we found in our evaluation
might be unrealistic (in another scenario). Here, the third
operation deletes a shopping cart after getting the details for
a selected customer or deletes a customer after querying its
cart. Thus, we recommend verifying the identified bindings
manually before running benchmark experiments, especially
for applications which involve multiple microservices. Nev-
ertheless, in the worst case, such unrealistic matchings sim-
ply add additional load on the SUT – it is only important
to disregards their respective results.

Overall, we believe that our approach and its prototypical
implementation are useful for a large percentage of microser-
vice deployments as they significantly reduce the implemen-
tation effort for microservice developers. Some restrictions
such as the REST requirement apply but could also serve as
an incentive to switch to REST in some cases where other
communication solutions are used for legacy reasons.

6. RELATED WORK
Benchmarking is a well-established method in the IT do-
main to quantify and verify quality of service of hardware
or software systems [7]. There are many benchmarks for dif-
ferent kinds of SUT, especially for database and storage sys-
tems, e.g., [32, 13, 3, 30, 25], but also for virtual machines,
e.g., [8, 36], web APIs [5, 6], or cloud-based queuing systems,
e.g., [26]. To the best of our knowledge, however, there is
currently no approach (or even a tool) for benchmarking mi-
croservices. We believe that this is largely due to the fact
that microservices do not come with the common interface
typical to other system domains such as POSIX for virtual
machines or SQL and CRUD interfaces for data manage-
ment. Without such a common interface, it becomes quite
hard to implement a benchmark that complies with standard
benchmark requirements – especially portability [21, 15, 7,
4, 37]. Recent work in the microservice benchmarking do-
main presents general benchmark requirements for microser-
vices [1], focuses on the automation of performance tests of
microservices [11], or implements a benchmark suite with
six different microservice applications [17].

Nevertheless, there are some approaches and tools which
could ease microservice benchmarking beyond building a
complete benchmark from scratch: Load generators such
as Artillery IO16 or LoadUI17 can run a defined and service-
specific workload against a microservice. By manually defin-
ing scenarios which represent typical interactions, a service-
specific workload can be created with parameters settings
which include the amount of request or the distribution of
scenarios. While it is possible to import service description
files and external data items as “workload”, this is always
specific to a particular microservice and its respective ver-
sion, i.e., there is no portability. Kao et al. [23] also generate
requests based on (regularly updated) service descriptions,
but focus on web services and manually define each test spec-
ification. With our approach, on the other side, arbitrary
REST microservices can be benchmarked as long as the ser-

16https://artillery.io/
17https://www.soapui.org/professional/loadui-pro.
html
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vice supports the respective interaction patterns. Pattern
definitions can be reused for benchmarking other microser-
vices. Atlidakis et al. [2] analyze OpenAPI specifications
and automatically generate functional tests to detect bugs
and security vulnerabilities. Our approach, on the other
side, focuses on non-functional requirements. Nevertheless,
their algorithm to resolve dependencies by analyzing actual
service responses can be used to identify dependencies be-
tween services automatically, which can ease our binding
definition step.

Zheng et al. [39] also use interaction patterns comprised of
basic operations (create, get, delete) for benchmarking but
do so for object storage services. Their approach relies on
the standard interface defined by CDMI and, hence, does
not have to deal with interface heterogeneity. Beyond these,
there are several systems which could be (mis)used as a load
generator. Benchmarking systems such as YCSB [9] or ND-
Bench [31] can be used to create synthetic workloads against
a CRUD endpoint. While these tools are very powerful
load generators – particularly when considering the broad
range of configuration options – they completely disregard
the mapping from the generic CRUD to a specific microser-
vice. Although creating such a mapping will be possible for
a large percentage of microservices, actually programming
the mapping still remains a manual effort that needs to be
repeated for every microservice and version that shall be
benchmarked. Furthermore, we believe that benchmarking
interaction with microservices should preferably be based
on sequences of operations instead of isolated operations to
get more realistic results (systems such as YCSB+T [12] or
BenchFoundry [3] are probably a better fit).

Besides workload generation and invocation of REST end-
points, our approach generates synthetic data for the work-
load. For data generation, we rely on JSON schema and the
faker.js library discussed above. Approaches such as [33] are
more powerful options for data generation and also support
parallel generation. Such parallelization could improve our
prototype in which generating the workload trace prior to
distributing it onto the Worker Nodes can be rather slow.
Nevertheless, we do not see parallelization as a critical fea-
ture since the generated workload can be persisted and re-
used instead of being generated from scratch for every bench-
mark run.

Aside from benchmarking, alternatives such as canary re-
leases and blue-green testing coupled with monitoring [35]
can be used if the option exists to expose the new microser-
vice (version) to a share of the production traffic.

Finally, an alternative to both benchmarking and live test-
ing – at least for clients of a microservice – can be to rely
on SLAs while monitoring violations, e.g., [24, 28]. This ap-
proach, however, only shifts the responsibility for ensuring
microservice performance to another organizational entity
and does not actually solve the challenge of detecting per-
formance changes of microservices early on, ideally as part
of a Continuous Integration pipeline [18, 38, 10].

7. CONCLUSION
Benchmarking microservices serves to understand and check
their non-functional properties for relevant workloads and

over time. Performing benchmarks, however, can be costly:
each microservice requires the design and implementation of
a benchmark from scratch, possibly repeatedly as the service
evolves. As microservice APIs differ widely, benchmarking
tools, which typically assume common interfaces of the sys-
tem under test, do not exist yet.

In this work, we proposed a pattern-based approach to re-
duce the efforts for defining microservice benchmarks, while
still being able to measure qualities of complex interactions.
Our approach assumes that microservices expose a REST
API, described in a machine-understandable way, and al-
lows developers to model interaction patterns from abstract
operations that can be mapped to that API. Required pa-
rameter values are provided at runtime and possible data-
dependencies between operations are resolved. We imple-
mented our approach in a prototype, which we used to demon-
strate the low effort applicability of our pattern-based bench-
marking approach to an open-source microservice-based ap-
plication with multiple services and dependencies. With
this, we could show that pattern-based benchmarking of mi-
croservices is indeed feasible which opens up opportunities
for microservice providers and tooling developers.
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