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Abstract—IoT data are usually exchanged via pub/sub, e.g.,
based on the MQTT protocol. Especially in the IoT, however,
the relevance of data often depends on the geo-context, e.g.,
the location of data source and sink. In this paper, we propose
two inter-broker routing strategies that use this characteristic
for the selection of rendezvous points. We evaluate analytically
and through experiments with a distributed pub/sub prototype
which strategy is best suited in three IoT scenarios. Based
on simulation, we compare the performance and efficiency of
our approach to the state of the art: Our strategies reduce
the event delivery latency by up to 22 times compared to
the only alternative that sends slightly fewer messages. Our
strategies also require significantly less inter-broker messages
than all other approaches while achieving at least the same
performance.
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dezvous Points

I. INTRODUCTION

The vision of the Internet of Things (IoT) is to connect
billions of devices. These devices usually operate at the edge
of the network; thus, they might be battery powered or have
a slow and unstable connection to the wide area network.
Rather than interconnecting devices directly, communication
in the IoT is usually done asynchronously via broker-
based pub/sub (publish/subscribe) [1]: client devices create
subscriptions (subscribers) and send events (publishers) to
any of the brokers which then match incoming events with
created subscriptions and deliver them accordingly. Many
mature solutions for inter-broker event and subscription
routing exist that have already proven their effectiveness,
e.g., [2]–[6].

There are special cases, however, in which additional
information can be used to further optimize inter-broker
routing: In IoT scenarios, the relevance of data for individ-
ual devices often depends on the geo-context of the data,
e.g., the current location of the sensor. In our previous
research [7], [8], we showed that this can be leveraged
when matching events and subscriptions at a single broker
by enriching messages with geo-context information which
significantly reduces excess data transmission and enables
new application scenarios.

In this paper, we propose to use geo-context information
to improve inter-broker routing1. The goal is to match data
close to either the publishers or subscribers of an event.
Therefore, we make the following contributions:

• We propose two novel strategies which use geo-
context information to improve inter-broker routing
(Section III).

• We evaluate analytically (Section IV) and through ex-
periments (Section V) which strategy is best suited in
three IoT scenarios.

• Using simulation, we show that our proposed strategies
reduce the event delivery latency by up to 22 times
compared to the only state-of-the-art alternative that
sends slightly fewer messages (DHT). We also show
that our strategies require significantly less inter-broker
messages than all other approaches while achieving at
least the same performance (Section VI).

With these contributions, we show that using geo-context
information can significantly improve inter-broker routing.

II. BACKGROUND

Distributed pub/sub is a very mature research domain. In
the following, we briefly describe the three categories in
which most pub/sub routing strategies can be categorized
(Section II-A). We also discuss how well these strategies are
suited for geo-distributed routing. Furthermore, we summa-
rize our previous definition of geo-contexts presented in [7],
[8] (Section II-B).

A. Inter-Broker Routing Strategies

In general, existing pub/sub inter-broker routing strategies
can be classified into the three categories flooding, gossiping,
and selective [10, p. 145]. With flooding, events or subscrip-
tions are broadcast to all other brokers. While this ensures
minimum end-to-end latency, it does not scale well as every
broker has to process all events or subscriptions from every
other broker which also leads to a high network load.
Gossiping focuses on tolerating very dynamic environments

1We have pre-published a technical report [9] that describes the abstract
concept proposed in this paper.
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Figure 1: Subscription GeoCheck (left) and event GeoCheck
(right), adapted from [7], [8].

by distributing messages between brokers randomly, it thus
sacrifices latency. While IoT devices might operate in such
an environment, the brokers, to which the routing approach
is applied, do not. Instead, it is more likely that the brokers
are deployed in a limited number of (cloud) regions with
low churn rates. Selective approaches are either filter-based
or build upon rendezvous points (RP). For the former, filters
are distributed across brokers and form dynamic multicast
trees for each event. Traversing the multicast trees, however,
results in high end-to-end latency. RPs reduce communica-
tion cost by being a “meeting point” for subscriptions and
events: the matching occurs at the RP brokers [10, p. 166].
Hence, they limit propagation of events and/or subscriptions
to a small subset of nodes which improves system efficiency.
If the RPs are close to the publishers or subscribers of an
event, the end-to-end latency is comparable to the one of
flooding solutions. The approach we propose in this paper
builds upon RP-based routing and specifically focuses on
selecting RPs that are close to either the publisher or the
subscribers of an event.

B. Enriching Events and Subscriptions with Geo-Context

In [7], [8], we have proposed to use geo-context informa-
tion for event matching. We update our previous terminology
slightly to better fit the purpose and scope of this paper:

There are four geo-context dimensions. Clients have a
geographic location, which consists of a latitude and a
longitude value. To the location of publishers, we refer as
publisher location, for subscribers as subscriber location.
Beyond this, each event and subscription has an area it
relates to; these can be described with geofences: The
event geofence ensures that only subscribers located in the
specified area receive the event, i.e., subscriber locations
must be inside the event geofence. The subscription ge-
ofence ensures that only the events of publishers located
in the specified area may be delivered to the subscriber,
i.e., publisher locations must be inside the subscription
geofence2. Geofences can be arbitrarily complex polygons.

2In previous work, we referred to these four dimensions as producer
location, consumer location, producer geofence and consumer geofence.

For using both geofences and locations in event matching,
two checks are necessary to decide whether data should be
delivered to a specific subscriber (Figure 1) – first, from the
subscribers’s perspective with the help of the subscription
geofence and publisher location (subscription GeoCheck)
and, second, from the publishers’s perspective with the
help of the event geofence and subscriber location (event
GeoCheck).

For a more detailed discussion and explanation of the
geo-context model, we refer to our previous work [7].
Furthermore, it usually makes sense to combine the two
GeoChecks with an additional ContentCheck, e.g., based
on topics. For a more detailed discussion on how this can
be used to build a (single-node) data distribution service
leveraging geo-contexts, we refer to our previous work [8].
In this work, we describe how such single-node system
instances (“brokers”) can communicate via RPs which are
selected based on geo-context information.

III. OPTIMIZING ROUTING WITH GEO-CONTEXTS

In Section II-A, we already mentioned that our proposed
approach builds upon RP-based routing as this is a good
choice when selected RPs are close to either the publishers
or subscribers of an event. Current state of the art solu-
tions, e.g., [4], [11], distribute RPs uniformly over available
brokers which works well if the message traffic is also
uniformly distributed. IoT data traffic, however, is often non-
uniformly distributed: published events are most relevant
to devices located in a particular geographical area. This
relevance can be expressed with geo-contexts as discussed
in Section II-B. Thus, our key idea is to use geo-contexts
to identify RPs that are close to either publishers and/or
subscribers of an event.

In this section, we first discuss some assumptions (Sec-
tion III-A) before we describe how geo-context information
can be used to select RPs close to subscribers (Section III-B)
or close to publishers (Section III-C). Both strategies come
with their own advantages and disadvantages. Which one is
better depends on the application scenario; we discuss this
in Section IV.

A. Assumptions

For our approach, we assume a setup that comprises mul-
tiple geo-distributed brokers and clients, i.e., IoT devices and
services. Even though brokers are geo-distributed, they are
aware of each other, typically have a good inter-connection,
and are well equipped in terms of computing power. Clients,
on the other hand, might operate in a constrained envi-
ronment and only communicate with the physically closest
broker: their local broker (LB). Consequently, a broker is
responsible for communication with all clients located in the
region surrounding its physical location as this asserts low
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Figure 2: Setup with three brokers that support communica-
tion between publishers (squares) and subscribers (circles).

latency communication3. We refer to this region as broker
area, see also Figure 2.

Subscriptions and published events comprise a payload,
some kind of content filter (e.g., a topic), and geo-context
information. When a client creates a subscription, it creates
the subscription at its LB. Similarly, when a client publishes
an event, it sends the event to its LB. Depending on the
strategy (Sections III-B and III-C), as soon as the LB has
received an event or subscription, it distributes them to the
RP where the matching occurs.

B. Selecting RPs Close to the Subscribers

With this strategy, the RPs for an event are all brokers
that are the respectively closest broker to each of the sub-
scribers that have created a matching subscription. Thus, the
RPs are the LBs of these subscribers. Hence, subscriptions
are not distributed to other brokers as subscribers create
subscriptions at their LB. The event, on the other hand, is
distributed to all brokers which might manage a matching
subscription. Fortunately, the event geofence can be used
to select these RPs because only broker areas intersecting
with the event geofence can contain subscribers that pass the
event GeoCheck (subscriber location inside event geofence).

Figure 3 shows an example with one publisher (P) that is
located in the broker area of broker B1 and publishes three
events—each has a different event geofence (EG):

• EG1 does not intersect with the broker area of broker
B2 (on the right) so the event does not need to be
forwarded for matching to B2.

• EG2 intersects with the broker areas of B1 and B2 so the
event needs to be matched at B1 and must be forwarded
for matching to B2.

• EG3 only intersects with the broker area of B2 so the
event needs to be forwarded for matching to B2. Note,
that matching at B1 can be omitted, as no subscription
created by the subscribers located in the broker area of
B1 can pass the event GeoCheck.

3Using the network distance instead of physical distance to determine
local brokers might be more accurate, but is also more complicated in an
environment with changing network conditions.
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Figure 3: An event only needs to be sent to brokers with a
broker area that intersects with the event geofence.

S

SG1

SG2

SG3

B1 Broker Area B2 Broker Area

B1

B2

Figure 4: A subscription only needs to be sent to brokers
with a broker area that intersects with the subscription
geofence.

The key benefit of this strategy over state-of-the-art strate-
gies is that by using geo-context information events only
need to be sent to a small subset of brokers.

C. Selecting RPs Close to the Publishers

With this strategy, the RP for an event is the broker
closest to the publisher of that event, i.e., the RP is the
publisher’s LB. Thus, matching only occurs at a single
broker. In exchange, all subscriptions must be distributed to
all brokers to which a matching event might be published;
subscription updates must also be propagated in a similar
fashion. Fortunately, the subscription geofence can be used
to select these RPs because only broker areas intersecting
with the subscription geofence might contain publishers that
pass the subscription GeoCheck (publisher location inside
subscription geofence).

Figure 4 shows an example with one subscriber (S) that
is located in the broker area of B1 and creates three sub-
scriptions with different subscription geofences (SG) each:

• SG1 and the broker area of B2 do not intersect, so the
subscription does not need to be forwarded to B2.

• SG2 intersects with the broker areas of B1 and B2 so the
subscription needs to be maintained at B1 and updates
must be forwarded to B2.



• SG3 only intersects with the broker area of B2 so the
subscription needs to be forwarded to B2. Note, that
the subscription can be discarded at B1, as none of the
publishers managed by B1 can publish an event that
passes the subscription GeoCheck.

After matching the event, it still needs to be distributed to
the LBs of subscribers with matching subscriptions as these
brokers are the ones communicating with the subscribers.
Still, in contrast to selecting RPs close to the publishers,
events are only distributed based on actual matches rather
than on potential matches. Hence, the key benefit of this
strategy over state-of-the-art strategies is that by using geo-
context information subscriptions only need to be forwarded
to a small subset of brokers and events are only forwarded
to brokers that are confirmed to be the LB of a matching
subscriber.

IV. EVALUATION: SCENARIO ANALYSIS

Depending on the application scenario, each RP selection
strategy results in a different number of RPs; the lower the
number of well chosen RPs, the lower the total number of
messages. In this section, we first calculate how the two
selection strategies affect the number of RPs (Section IV-A).
Then, based on these calculations, we discuss which RP
strategy is the best choice for three example scenarios
(Section IV-B).

A. Calculating the Number of RPs

There are four client actions that require RPs:
i) a subscriber updates its location,

ii) a subscriber creates/updates4/deletes a subscription,
iii) a publisher updates its location,
iv) and a publisher publishes an event.

For this analysis, we define the following: When an event
is published, E is the set of all broker areas that intersect
with the event’s geofence. Every subscriber has a set of
active subscriptions {si | i ∈ {1, . . . , n}}, with n being the
subscriber’s total number of subscriptions. Si is the set of
all broker areas that intersect with the subscription geofence
of si. Finally, b is the total number of brokers.
i) Subscriber Location Update: An updated subscriber
location must be distributed to all brokers that require it
for the matching of events. When selecting RPs close to
the subscribers, events are only matched at the LB of the
subscriber, so the number of RPs is 1. When selecting
RPs close to the publishers, events might be matched at
any broker whose broker area intersects with any of the
subscribers subscription geofences, so the number of RPs
is |

⋃n
i=1 Si|.

ii) Subscription Update: An update of subscription si must
be distributed to all brokers that require it for the matching of
events. When selecting RPs close to the subscribers, events

4For example, to use another subscription geofence.

Table I: Number of RPs for each type of client action and
RP selection strategy when geofences exist.

Client Action Type RPs at subscriber RPs at publisher

Subcriber Location Update 1 |
⋃n

i=1
Si|

Subscription Update 1 |Si|
Publisher Location Update 1 1
Event Publishing |E| 1

are only matched at the LB of the respective subscriber, so
the number of RPs is 1. When selecting RPs close to the
publishers, events might be matched at any broker whose
broker area intersects with the geofence of si, so the number
of RPs is |Si|.
iii) Publisher Location Update: An updated publisher
location must be distributed to all brokers that require it
for the matching of events. When selecting RPs close to the
subscribers, events might be matched everywhere, so the
number of RPs is b. However, an LB could also piggyback
the current publisher location on each event of the same
publisher it has to distribute (see iv) below). In this case, the
number of RPs is 1 for publisher location updates as they
are not distributed separately. When selecting RPs close to
the publishers, events are only matched at the LB of the
publisher, so the number of RPs is 1.
iv) Event Publishing: A published event must be distributed
to all brokers that match the event with managed subscrip-
tions. When selecting RPs close to the subscribers, events
are matched at any broker whose broker area intersects with
the geofence of the given event, so the number of RPs is
|E|. When selecting RPs close to the publishers, events are
only matched at the LB of the publisher, so the number of
RPs is 1.

In summary (Table I), the number of RPs, and thus
the overhead of inter-broker communication, depends on
the scenario specific workload. Selecting RPs close to the
subscribers is better for workloads that involve

• many subscriber location updates,
• many subscription updates,
• and large subscription geofences that intersect with

many broker areas
as subscription information does not need to be distributed
by the LB. Selecting RPs close to the publishers, on the
other hand, is better for workloads that involve

• a high volume of published events
• as well as large event geofences that intersect with

many broker areas
as the events can be matched at the LB of each publisher.

B. Discussion based on Example Scenarios

In [7], we presented three (IoT) scenarios that use geo-
context information. In the following, we use these three
scenarios to discuss which RP selection strategy is better



suited in what situation. For more information and examples,
we refer to the original paper.

1) Open Environmental Data: In this scenario, IoT sen-
sors provide data access to all clients that subscribe to related
topics such as temperature, humidity, or barometric pressure.
Clients subscribe to topics based on their individual content
interests. Furthermore, by using a subscription geofence,
they only receive data of sensors that are located in the
specified geofence. For example, a smart blinds control
system located in Delft could subscribe to the temperature
topic and use a subscription geofence that only contains the
Netherlands.

The most important geo-context related characteristics in
this scenario are:

• Event geofences do not exist, so no event GeoCheck is
needed.

• Subscription geofences have arbitrary size, as sub-
scribers can be interested in very small, but also very
large regions.

• Subscriptions are updated rarely as subscribers do not
have to update their subscription geofences multiple
times a day.

• Events (sensor readings) are published frequently, but
in many cases no matching subscriber exists.

As event geofences do not exist, |E| equals the number
of all available brokers. Subscription geofences can have
arbitrary sizes, so |Si| is somewhere between 1 and the
number of all available brokers. This is an unfavorable
combination as subscription updates as well as published
events require inter-broker communication. The subscription
update frequency, however, is lower than the event publish-
ing frequency. Thus, selecting RPs close to the publishers is
the better strategy. Another benefit of this strategy is that
events are not distributed to brokers without a matching
subscriber.

2) Local Messaging and Information Sharing (Hiking):
In this scenario, clients consume and share data of other
clients in proximity while being mobile. For this, each client
creates subscriptions to topics of interest and a subscription
geofence that covers the immediate surrounding area. Fur-
thermore, clients also publish events to fitting topics with an
event geofence that covers the immediate surrounding area.

The most important geo-context related characteristics in
this scenario are:

• Geofences are small and unlikely to intersect with
multiple broker areas.

• Publisher and subscriber locations are updated fre-
quently as both are mobile.

• Subscriptions are updated frequently as subscription
geofences depend on the respective subscriber location.

• Events are published frequently.
As both geofences only intersect with a very small number
of broker areas (often only with a single one), |E| and

|Si| usually equal 1. In addition, it is very likely that the
publisher and all matching subscribers for a given event are
connected to the same LB, so only a small amount of data
has to be distributed to other brokers. Therefore, none of the
two RP selection strategies has a clear advantage over the
other one.

3) Context-based Data Distribution: In this scenario,
events are delivered based on the content interests of sub-
scribers and the domain knowledge of publishers. This way,
all subscribers must only specify once what kind of data they
want to receive while publishers define in which geographic
area their events are relevant. For example, citizens could
subscribe to events that carry emergency alerts while public
authorities can accurately define in which area their alerts
should be received. Then, without having to update their
subscriptions again, citizens could travel between districts
or cities and still get all relevant alerts.

The most important geo-context related characteristics in
this scenario are:

• Event geofences have arbitrary size but are considered
to be relatively small and intersect with only a few
broker areas.

• Subscription geofences do not exist, so no subscription
GeoCheck is needed.

• Subscriber locations are updated frequently as sub-
scribers are mobile.

• Subscriptions are updated rarely as subscribers have to
subscribe to their desired topics only once.

• Events can be published at any frequency as this
depends on the kind of data (e.g., advertisements vs.
emergency alerts).

As event geofences are considered to be small, |E| usually
equals 1. Subscription geofences do not exist, so |Si| equals
the number of all available brokers. Subscriber location
updates must be forwarded to |

⋃n
i=1 Si| brokers, so due

to the high update frequency, selecting RPs close to the
publishers is an unfavorable approach for this scenario.
Instead, selecting RPs close to the subscribers is the better
approach as publisher locations do not need to be forwarded
(no subscription GeoCheck) and |E| is considerable smaller
than |

⋃n
i=1 Si| and |Si|.

V. EVALUATION: EXPERIMENTS

The goal of our experiments is twofold. First, we want to
show that attaching the geo-context to events and subscrip-
tions for the selection of RPs is feasible in practice. Second,
we want to experimentally validate our scenario discussions
from the previous section. Note, that comparing our RP
selection approach to the state of the art is not the goal of
this section. We do this in depth in Section VI through sim-
ulation, because experiments with multi-threaded distributed
systems can never be fully deterministic. Furthermore, we
already showed in [8] that the overhead of processing geo-
contexts is negligible.



Table II: The characteristics of each workload depend on the
underlying scenario.

Number of ... Open Env. Hiking Ctx.-based

Location updates 7,200 193,709 69,236
Subscription updates 75,168 128,008 5,544
Subscription geofence overlaps 1,225 502 –
Event publishings 216,029 111,811 62,675
Event geofence overlaps – 623 222

A. Prototype

We have extended the GeoBroker prototype from [8] with
the capability to use RPs for inter-broker communication.
The source code of this distributed GeoBroker (DisGB) is
available as open source on GitHub5. When starting DisGB,
we can select one of three modes: single, RP subscriber,
and RP publisher. At single, DisGB behaves similar to
GeoBroker, i.e., there is only one broker node to which all
clients connect and thus no inter-broker communication. In
the two other modes, DisGB supports a distributed broker
deployment in which RPs are either selected close to the sub-
scribers (RP subscriber) or the publishers (RP publisher).
For the current prototype, broker addresses and non-over-
lapping broker areas must be provided as configuration data;
more advanced solutions based on, e.g., dynamic discovery,
could be added if needed.

To assert the correctness of our implementation and setup,
we ran a very simple workload prior to our scenario experi-
ments with DisGB configured in single mode, RP subscriber
mode, and RP publisher mode. We then verified that in
each run all messages had been sent and that each client
had received the same set of messages. We also verified
that event matching is done correctly through another small
experiment. Here, we determined for each published event
the correct subscribers manually to then verify that the event
matching carried out by our prototype delivers the same
result. It should be noted that geofences can be arbitrarily
complex polygons which can, for example, specified in the
Well-Known Text [12] format.

B. Experiments

For the experiments, we setup three brokers in different
AWS regions. Two brokers are near to each other (Paris and
Frankfurt), and one is located further away (Ohio). In each
region, 1200 clients running on separate machines connect
to their local broker and continuously send messages that
resemble the scenario workloads from Section IV-B.

Each scenario workload comprises a set of client actions
such as location updates, subscription updates, and event
publishings. See Table II which shows a high level overview
of the individual workload characteristics resulting from
running each workload for 15 minutes. Geofence overlaps

5https://github.com/MoeweX/geobroker
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Figure 5: Open environmental data: selecting RPs close to
the publisher is the most efficient strategy.

describe how many geofences overlap with more than one
broker area; when no geofence exists (“–” in table), an event
or subscription must be distributed to all brokers.

C. Results

A key characteristic when comparing pub/sub routing
strategies is the amount of inter-broker messages, i.e., lo-
cation updates, subscription updates, and published events,
which are distributed by an LB of a client to RPs. Fewer
inter-broker messages indicate a more efficient routing strat-
egy. Figures 5, 6, and 7 show the number of inter-broker
messages for each strategy and scenario. The DisGB values
are derived directly from the experiments. As a baseline, we
could not use DisGB in single mode, as then all messages
are processed by a centralized broker; here, no routing is
necessary. Instead, we calculated how flooding events (FLE)
or flooding subscriptions (FLS) would perform [10, p. 151].
We chose these strategies as a baseline, as flooding events
is very similar to selecting RPs close to the subscriber, and
flooding subscriptions is very similar to selecting RPs close
to the publishers. Both also result in the lowest possible
latency as events/subscriptions are sent directly to all brokers
that might need them for matching. The difference is that our
strategies use the event or subscription geofence to limit the
number of RPs which reduces the number of inter-broker
messages. We present a more extensive comparison with
approaches from related work in Section VI.

When selecting RPs close to the subscribers, events
must be distributed to |E| brokers, i.e., all brokers whose
broker area intersects with the event’s geofence. Thus, the
numbers are as expected from our scenario analysis (see
Section IV-A) because the number of inter-broker messages
equals the number of event geofence overlaps (there are
no overlaps between Columbus + Paris or Columbus +
Frankfurt).

When flooding events, every published event must be
distributed to all other brokers. For example, this leads to
223,622 (=2∗111,811) inter-broker messages for the Hiking
scenario. Note, that the real inter-broker messages from the
DisGB experiment match the calculated FLE messages in
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Figure 6: Hiking: both RP selection strategies are more
efficient than the flooding strategies.

the Open Environmental Data scenario. This makes sense,
as there are no event geofences and DisGB can, thus, not
limit the number of target brokers.

When selecting RPs close to the publishers, subscriber
location updates need to be distributed to |

⋃n
i=1 Si| brokers;

it is not trivial to calculate this number. The only exception
is the context-based data distribution scenario, for which no
subscription geofence exists. Here, every subscription update
and location update is sent to the two other brokers: 149,560
(=2∗69,236 + 2∗5,544). However, DisGB does not distribute
the location updates of a subscriber if the subscriber has not
created a subscription yet; thus, the actual number is lower
(143,050). Furthermore, events that have been successfully
matched against a subscription created by a client connected
to another broker must be sent to the LB of this subscriber
as well.

When flooding subscriptions, every subscription or sub-
scriber location update must be distributed to all other
brokers. In the Hiking scenario, this leads to 643,434
(=2∗193,709 + 2∗128,008) inter-broker messages. In addi-
tion, successfully matched events of subscribers connected to
another broker must also be distributed. Successful matches
can only be determined through simulation or an experiment,
so the calculated number of inter-broker messages reported
in the figures is slightly lower than FLS would show in
practice.

D. Summary

With our experiments, we demonstrate that using geo-
context information to select RPs is feasible in practice. We
also validated our scenario analysis from Section IV-B: For
scenarios without or with very large event geofences (Open
Environmental Data scenario), selecting RPs close to the
publisher is the better strategy, as this reduced inter-broker
messages by 98.2% (7,604 inter-broker messages compared
to 432,058). For scenarios with similar event and subscrip-
tion geofences (Hiking scenario), none of the two strategies
has a clear advantage over the other one (2,323 inter-broker
messages compared to 623), while both performed signif-
icantly better than their respective baselines. For scenarios
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Figure 7: Context-based data distribution: selecting RPs
close to the subscribers is the most efficient strategy.

without or with very large subscription geofences (Context-
based Data Distribution scenario), selecting RPs close to the
subscribers is the better strategy, as this reduced inter-broker
messages by 99.8% (222 inter-broker messages compared to
143,050).

VI. EVALUATION: SIMULATION

In this section, we describe the results of comparing our
proposed RP selection strategies to related work. For this,
we use simulation (Section VI-A) with a newly developed
simulation tool (Section VI-B) that allows us to compare
different routing strategies (Section VI-C) in a fully deter-
ministic way. Our results (Section VI-D) indicate that our
strategies reduce the event delivery latency by up to 22 times
while still requiring less inter-broker messages than most
other strategies.

A. Simulation Design

Our simulation model follows a realistic setup: brokers
are distributed across the globe and clients connect to their
respectively nearest broker. For each simulation run, based
on a given total number of brokers and clients, we determine
broker and client locations as follows:

1) Place brokers at the locations of randomly chosen
cities with a population of more than 1 million citizens
based on the world cities dataset6.

2) Assign clients in proportion to the population of a
broker’s city and the total population of all chosen
cities to each broker.

3) Generate random locations for each client of a broker
in the area that is closest to this broker7; this area is
also the broker area needed for the DisGB strategies.

We developed a tool that visualizes simulation setups, a live
demo for our setup is available on GitHub8. In total, we

6https://simplemaps.com/data/world-cities
7We determine this area by dividing the earth surface in non-overlapping

squares and then assigning each square to the broker whose location is
closest to the square’s center. Other methods such as Voronoi diagrams
could also be used.

8https://moewex.github.io/DisGB-Simulation/



compare seven RP selection strategies (Section VI-C). Our
simulation workload is based on the Hiking scenario from
Section V as for this neither of our two strategies has a clear
advantage. While the distribution of subscriptions and events
between brokers is different for each strategy, the result from
the client perspective does not change: each client receives
the same events based on its individual subscriptions regard-
less of the RP selection strategy used. For this, all brokers
have to do a ContentCheck as well as the two GeoChecks
when matching messages (see Section II-B). Otherwise, for
example, the other strategies would also deliver events to
subscribers that are not present in the event’s geofence.
While each RP selection strategy has its own way of dis-
tributing events, subscriptions, or both to the corresponding
RPs, not all have the capability to distribute client locations
appropriately. Still, client locations are needed for the two
GeoChecks. Enhancing the strategies to distribute location
updates is out of scope for this paper. Thus, for all simulation
runs, we assume that each broker floods client location
updates to all other brokers, even though our proposed RP
selection strategies are more efficient than this. Due to this
decision, we disregard effects of location updates for the
analysis of simulation results (Section VI-D).

We decided to have 1000 distinct topics, each client
subscribed and published to five topics. Furthermore, we
used circular geofences (arbitrary shapes are possible in
practice); all event geofences had a radius of 5◦(about
555km at the equator) and all subscription geofences had
a radius of 10◦(about 1110km at the equator). We decided
to use such large values for the geofences to increase the
amount of inter-broker traffic; smaller geofences particularly
benefit DisGB. For each RP selection strategy, we ran one
simulation round with 100,000 clients and 25 brokers9, one
with 1,000,000 clients and 25 brokers, and one with 100,000
clients and 256 brokers10.

With the simulation, we can discuss how each RP se-
lection strategy affects three aspects: First, the number of
inter-broker event and subscribe messages; fewer messages
means that the strategy is more efficient. Second, the event
delivery latency: how much time does it take for a client
to receive an event after it has been published by any
other client connected to any of the brokers. Third, the
subscription update delay: how much time does it take for a
broker to receive a subscription update distributed by another
broker. In general, having a lower event delivery latency
and subscription update delay means that a strategy offers
a superior performance compared to a strategy with higher
values.

9We chose this number based on the active AWS Cloud regions (24).
10The GQPS strategy (Section VI-C) works best if the square root of the

number of brokers is an integer.
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Figure 8: Broker 1 receives a subscription update at Tick
1 (1). Besides updating its state (2), it must distribute
the update to Broker 2 as specified by its RP selection
strategy (3). As the latency is 10ms, Broker 2 receives
the subscription update at Tick 11 (4). It does not need
to be further distributed so it is only used to update the
broker’s state (5). After all brokers have finished processing
subscription updates, Broker 2 can continue to process the
next type of message (6).

B. Simulation Tool

The simulation tool can be customized with a number
of parameters. The six most important parameters are: the
chosen RP selection strategy, the number of brokers, clients,
and distinct topics, the size of event geofences, and the
size of subscription geofences. The simulation tool is fully
deterministic, i.e., repeating a simulation run with the same
parameters (and random seed) leads to the same result. Our
tool implements a parallel discrete-event simulation [13].
The simulation time granularity is 1ms, we refer to one time
unit as a tick.

Upon startup, our simulation tool generates a workload
based on its input parameters. Every workload comprises a
set of brokers that use the specified RP selection strategy,
and a set of client messages that should be received by an LB
at a certain tick. After the initialization, the simulation tool
sequentially processes ticks and the corresponding messages.
During each tick, the tick’s messages are delivered in a pre-
defined order to brokers which use them to update their state,
e.g., managed client locations or subscriptions, accordingly.
Besides state updates, brokers might also further distribute
messages to other brokers or deliver events to clients. For
this, they determine when a message would be received
by their target and then add this message to the event
queue for the corresponding tick (see Figure 8). The latency
between two brokers is calculated by multiplying their
physical distance with 0.021 ms/km. We determined this
constant by analyzing the 2016 IPlane traceroute dataset11.
For communication between a client and its LB, we use a
fixed latency of 5ms so that we can determine which share

11https://web.eecs.umich.edu/∼harshavm/iplane/



of the overall latency is caused by inter-broker traffic.
Especially for larger client and broker numbers, it is not

feasible to store the full set of sent and received messages
for analysis. Thus, we calculated all result values presented
in Section VI-D by analyzing the stream of data. We used
the P2 algorithm by Jain and Chlamtac [14] to compute
percentiles heuristically. The mean squared error of the P2
algorithm “is comparable to that obtained by order statistics
and [...] both tend to zero as sample size is increased” [14].
The simulation tool is implemented in Kotlin and available
as open source on GitHub12.

C. RP Selection Strategies

In our simulation tool, we have implemented our two RP
selection strategies (Section III) and five additional strategies
from related work. In the following, we briefly describe at
which brokers the matching occurs for these five additional
strategies (i.e., how the RPs are determined). We chose these
strategies because they are either well known or because our
two strategies do not obviously offer a superior performance
when geo-context information is available.
Flooding Events (Flood E): Every broker is an RP for
every event. When an LB of a publisher receives an event,
it distributes it to all other brokers. After matching this
event, brokers can deliver the event to their local subscribers
directly.
Flooding Subscriptions (Flood S): The LB of a publisher
is the only RP for a given event. When an LB of a subscriber
receives a subscription update, it distributes it to all other
brokers. After matching an incoming event, the broker might
have to notify remote brokers about successful matches so
that they can deliver the event to their local subscribers. This
is necessary, as each client only communicates with its LB.
Consistent Hashing (DHT): This strategy builds on dis-
tributed hash tables and is used in pub/sub systems such as
Scribe [4] or Hermes [11]. The RP is determined by mapping
the event and subscription topics to a particular broker with
consistent hashing [15]. Once an RP has matched the event,
it notifies the LBs of matching subscribers about successful
matches so that they can deliver the event to their local
subscribers.
Grid Quorum (GQPS): To determine RPs, an application-
level overlay network is created that makes each broker
addressable by a position in a grid, i.e., by its row and
column. RPs are all brokers in the same row or column
as the LB, so this is where events and subscriptions must
be sent to [16]. After matching an event, the RP notifies
the LBs of matching subscribers that have not been in the
same row/column as the LB of the publisher about successful
matches.
Broadcast Groups (BG): Physically close brokers orga-
nize themselves in broadcast groups in which events are

12https://github.com/MoeweX/DisGB-Simulation
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Figure 9: For 100,000 clients and 25 brokers, both DisGB
strategies require less inter-broker messages than all other
strategies.

flooded to other group members for matching, i.e., all group
members of a publisher’s LB are an RP. Furthermore, one
broker of each broadcast group (the leader) aggregates and
forwards events and subscriptions originating in its group
to a centralized cloud broker13. The cloud broker matches
events with subscriptions created by other leaders, therefore,
it is also an RP. If an event is matched successfully at the
cloud broker, every member of the corresponding broadcast
group also becomes an RP for this event to match and deliver
it [17].

In the following, the abbreviation for selecting RPs close
to the subscribers is DisGB E, as with this strategy events
are distributed. Similarly, the abbreviation for selecting RPs
close to the publishers is DisGB S, as with this strategy
subscriptions are distributed.

D. Simulation Results

In total, we ran 27 simulation rounds that each comprised
a fifteen minute workload in simulation time14.

Figure 9 shows the number of distributed inter-broker
event or subscription messages for 100,000 clients and 25
brokers. The first notable observation is that both DisGB
strategies require less inter-broker messages than all
other strategies. When observing the two flooding strate-
gies, one can see that the number of distributed subscriptions
is higher than the number of distributed events. Therefore,
clients update subscriptions more often than they publish
events in the workload used. This, and the fact that the
subscription geofence radius is twice the radius of event
geofences, also explains why the DisGB E strategy requires
less inter-broker messages than DisGB S. Using 10 times
more clients (1,000,000) only has the effect that each
strategy requires about 10 times more inter-broker messages.
Using approximately 10 times more brokers (256), however,
does reduce the amount of inter-broker messages for most

13AWS operates its biggest data center in West Virginia, USA, so that
is where we put the cloud broker for the simulation.

14The execution time was up to 16 hours for a single simulation run.
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Figure 10: For 100,000 clients and 256 brokers, DHT
requires the fewest inter-broker messages.
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Figure 11: For 100,000 clients and 25 brokers, both DisGB
strategies offer a similar performance as their respective
flooding counterparts.

strategies compared to the two flooding strategies (see Fig-
ure 10). Furthermore, the DHT strategy now requires the
lowest amount of messages because exactly one broker is
responsible for the matching of events and subscriptions of
a given topic.

Figure 11 shows the event delivery latency and the sub-
scription update delay for 100,000 clients and 25 brokers.
As the subscription update delay describes how much time it
takes for a broker to receive a subscription update distributed
by another broker, Flood E and DisGB E do not have
such a delay. With all other strategies, a subscriber might
still receive events to which it has already unsubscribed
at its LB. The minimum event delivery latency is 10ms;
this latency can only be achieved if the publisher and
subscriber are connected to the same broker. This is the
case for more than 75% of the delivered events, so the
first three quartiles of the event delivery latency for BG,
DisGB E, DisGB S, Flood E, Flood S, and GQPS are at
10ms. Still, comparing the mean and standard deviation
of these strategies (Table III) reveals that both DisGB
strategies offer the same event delivery latency as their
respective flooding counterparts. Furthermore, the event
delivery latency of both DisGB strategies is up to 22x lower
than the one achievable by strategies found in related work.
Using 10 times more clients (1,000,000) does not signifi-
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Figure 12: For 100,000 clients and 256 brokers, latency and
delay increase slightly compared to Figure 11 as having
more brokers increases the likelihood of inter-broker com-
munication.

Table III: Average event delivery latency and standard devi-
ation (in brackets) in ms for different broker (B.) and client
(C.) numbers.

Strategy 25 B., 100k C. 25 B., 1M C. 256B. 100k C.

BG 22 (63) 27 (75) 24 (69)
DHT 353 (188) 348 (184) 355 (195)
DisGB E 16 (26) 19 (31) 16 (8)
DisGB S 16 (26) 19 (31) 16 (8)
Flood E 16 (26) 19 (31) 16 (8)
Flood S 16 (26) 19 (31) 16 (8)
GQPS 31 (85) 39 (98) 105 (145)

cantly influence the event delivery latency or subscription
update delay. Using 10 times more brokers (256), however,
does influence both values (see Figure 12 and Table III) as
subscribers are more often connected to a different broker
than the publisher of a matching event (the third quartile is
not at 10ms anymore). Still, both DisGB strategies continue
to offer a similar performance to their respective flooding
counterparts.

VII. RELATED WORK

Our two RP selection strategies use the geo-context infor-
mation that we proposed in our previous work [8]. There,
we have already extensively discussed related work on geo-
contexts and (centralized) location-based service such as
[18]–[21]. Thus, we refrain from repeating this discussion
and focus on distributed pub/sub systems. Furthermore, we
have already discussed [4], [11], [16], [17] in Section VI.

Efficient routing of events and subscriptions in geo-dis-
tributed pub/sub systems is a mature research domain and
many surveys that summarize the state of the art exist, e.g.,
[1], [22]. There are, however, only a few publications that
propose to use geo-context information to improve inter-
broker routing.

Frey and Roman [23] propose an event routing strategy
that also only selects RPs within a defined context of
relevance (comparable to our event geofence). They do not,



however, distinguish between geofences and client locations;
therefore, their approach does not work well when clients
are mobile as they would have to continuously update
their context of relevance (and thus all their subscrip-
tions). Furthermore, they only support the distribution of
events while we can also distribute subscriptions. Kawaguchi
and Bandai [24] propose a distributed broker system in
which each event is only routed to a single broker that
is identified by a custom topic structure which embeds
geographic information. This approach does not work well
when some clients are located far away from the broker
responsible for one of their topics due to high round-trip
latency. Cugola and Munoz de Cote [25] use geo-context
information, similar to the one of our two strategies, for the
routing of events or subscriptions. Their approach, however,
builds upon selective filtering rather than rendezvous points;
so events must traverse a multi-cast tree which increases
end-to-end latency. Furthermore, it is also not possible
to directly connect all brokers because each broker needs
to know the current location of all clients connected to
neighboring brokers. This prevents scaling to large amounts
of mobile clients in fully meshed environments. Chapuis
et al. [26], [27] propose a distributed pub/sub architecture
that supports matching based on a geo-context subset. With
their architecture, they specifically aim to enable horizontal
scalability of clustered machines and it cannot be used for
geo-distributed deployments.

There are also geo-distributed approaches that build on
RPs but do not consider geo-context information, e.g., [28]–
[31]. Thus, such approaches do not consider that IoT data
traffic is often non-uniform when selecting RPs which leads
to worse results. This is also the problem with other geo-
distributed pub/sub system approaches that do not consider
geo-context information, e.g., [2], [3], [5], [6], [32]–
[35]. These systems are highly optimized for a variety
of execution environments and purposes; including P2P
environments [34] and distributing vast data volumes at
Facebook [35]. Still, they do not use geo-context information
and can therefore not ensure that data is only distributed to
where it is relevant.

VIII. DISCUSSION

The results from the experiments and the simulation show
that the two DisGB strategies provide an event delivery
latency comparable to flooding. Furthermore, the simulation
confirmed that DisGB requires less inter-broker messages
than strategies from related work. This, however, is only the
case if geo-context information is available. Without such
information, the DisGB strategies require as many inter-
broker messages as the flooding strategies.

Therefore, when building a communication middleware
for the IoT, we recommend to use a hybrid approach: If
geo-context information is available, RPs should be selected
using either of the two DisGB strategies, in particular

depending on whether clients update subscriptions or publish
events more often. If not, we recommend to use either
broadcast groups or DHTs – depending on whether the focus
is on event delivery latency or the total number of messages.

IX. CONCLUSION

In this paper, we proposed two inter-broker routing strate-
gies that use geo-context information for the selection of
rendezvous points. We evaluated analytically and through
experiments with a distributed pub/sub system prototype
which strategy is best suited for three kinds of IoT scenarios.
Based on simulation, we compared the performance and
efficiency of our approach to the state of the art: our
strategies reduced the event delivery latency by up to 22
times while still requiring less inter-broker messages than
most other strategies.
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